М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
карим050
карим050
16.05.2023 07:39 •  Алгебра

Найдите нули функции:y = 2 x^2 + 6x + 27.

👇
Открыть все ответы
Ответ:

примерно так: 
4 sin^3x=3 cos(x-п/2) 
4 sin^3x=3 sinx 
Подстановка: sinx=y 
4у^3 - 3y=0 
y(4y^2-3)=0 

y=0 
4y^2-3=0 - решаем квадратное уравнение: D= 0-4*4*(-3)=4^2*3 
у1=(-0+4*корень квадратный из 3)/2*4=(корень квадратный из 3)/2 
у2=(-0-4*корень квадратный из 3)/2*4= -(корень квадратный из 3)/2

ответ является следствием решения трех уравнений и состоит из пяти частей: 
sinx=0 при x= 2*Пи*n 
sinx= (корень квадратный из 3)/2 при x=(Пи/3)+2*Пи*n (60 градусов + период) 
x=(Пи*2/3)+2*Пи*n (120 градусов + период) 
sinx= -(корень квадратный из 3)/2 при x=-(Пи/3)+2*Пи*n (-60 градусов + период) 
x=(Пи*2/3)+2*Пи*n (-120 градусов + период)

4,6(6 оценок)
Ответ:
nastyabogatiko
nastyabogatiko
16.05.2023
Доброго времени суток!

Для нахождения координат многочлена -2t^2+7t+3 в заданном базисе, нам необходимо выразить этот многочлен как линейную комбинацию базисных многочленов f1(t), f2(t) и f3(t).

Для начала, представим искомый многочлен в виде:
-2t^2+7t+3 = a*f1(t) + b*f2(t) + c*f3(t)

Здесь a, b и c - коэффициенты, которые мы должны найти. Для этого, мы можем сравнить коэффициенты при одинаковых степенях t в обоих частях уравнения:

Коэффициент при t^2:
-2 = a

Коэффициент при t:
7 = -b + c

Коэффициент при t^0 (константа):
3 = a + 2b

Таким образом, у нас есть система уравнений:
a = -2
-b + c = 7
a + 2b = 3

Решим эту систему методом подстановки. Сначала найдем значение a:
a = -2

Подставим это значение во второе уравнение:
-(-2) + c = 7
2 + c = 7
c = 7 - 2
c = 5

Теперь подставим значения a и c в третье уравнение:
-2 + 2b = 3
2b = 3 + 2
2b = 5
b = 5/2

Таким образом, мы нашли значения коэффициентов a, b и c, а искомый многочлен -2t^2+7t+3 можно представить в базисе f1(t), f2(t) и f3(t) следующим образом:

-2t^2 + 7t + 3 = -2*(t^2 + 1) + (5/2)*(-t^2 + 2t) + 5*(t^2 - t)

Итак, координаты многочлена -2t^2+7t+3 в базисе f1(t), f2(t) и f3(t) равны:
a = -2
b = 5/2
c = 5
4,8(45 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ