В ящике лежат 80 кубиков разных цветов: 25 красных, 20 зелёных, 20 жёлтых, остальные синие и белые. Сколько кубиков нуж- но взять, чтобы среди них оказалось не менее 15 кубиков одного цвета? РЕШИТЬ С ПОЛНЫМ РЕШЕНИЕМ !)
Учитывая самое неблагоприятное событие (чтобы было гарантировано, а значит не менее), что каждый раз достаем разный цвет кубика примем:
с=а*(в-1)+1+д
где
а - количество цвета кубиков = 3 (только тот цвет, где гарантированно есть 15 кубиков)
в - необходимое количество кубиков одного цвета = 15;
с - необходимо достать кубиков из ящика;
д - количество кубиков с количеством цвета меньше 15.
тогда
с=3*(15-1)+1+15=58 кубик
Объяснение:
ОДЗ : cos2x ; sin2x
cosx ± 1/4 ; sinx ; cosx 0
x ± arccos0,25 + 2πk ; x πk/2 , k ∈ z
2*2cos^2 x - 2 = 1/2cos2x * ( ... )
2cos2x = 1/2cos2x * ( ... )
можно поделить на cos2x, так как cos2x также есть в знаменателе, то есть корни мы не теряем
2 = 1/2 * ( ... )
для удобства делаем замену: пусть 2x = t
2 = 1/2 * (/cost + 1/sint)
2 = /2cost + 1/2sint
(sint + cost) / 2costsint = 2
-2 (-/2 sint - 1/2 cost) / 2costsint = 2
-2 (-sin (π/3) sint - cos(π/3) cost) / 2costsint = 2
выносим минус за скобки и сокращаем 2
а также, используя формула приведения косинуса, только в обратную сторону, делаем все красиво
cos (π/3 - t) / costsint = 2
cos (π/3 - t) = 2costsint
cos (π/3 - t) - sin2t = 0
sin (π/2 - (π/3 - t) - sin2t = 0
sin (π/6 + t) - sin2t = 0
используем sin(t) - sin(s) = 2cos((t + s)/2) * sin ((t - s)/2)
и делим на 2
cos ((π + 18t)/12) * sin((π - 6t)/12) = 0
cos ((π + 18t)/12) = 0
sin ((π - 6t)/12) = 0
t = 5π/18 + 2πk/3
t = π/6 + 2πk
вспоминаем, что t = 2x
x = 5π/36 + πk/3
x = π/12 + πk
k ∈ Z