Y=-3x²+2x-4 при х=0 y=-4 корней нет поскольку дискриминант = b²-4ac=-44< 0 - парабола лежит под осью х. y'=-6x+2 -6x+2=0 6x=2 x=1/3 x∈(-∞; 1/3) y'> 0 возрастает x∈(1/3; ∞) убывает в точке х=1/3 максимум у=-3*1/9+2/3-4=-3 1/3 область определения r, ни четная ни нечетная. y''=-6 точек перегиба нет, выпукла вверх.
Х²+8х+18=х²+2*4х+4²+2=(х+4)²+2 Квадрат числа - это либо положительное число, либо ноль. То есть (х+4)²≥0. Если к положительному числу или нулю добавить 2, то получится положительное число. Значит, выражение принимает положительное значение при любом значении х. Наименьшее значение выражение примет в том случае, если значение выражения (х+4)² будет наименьшим, то есть 0, поскольку квадрат числа не может быть отрицательным. При этом значение выражения будет равно 0+2=2. Итак, найдем х, при котором выражение принимает наименьшее значение: (х+4)²=0 х+4=0 х=0-4 х=-4 - при таком значении х значение будет наименьшим. ответ: наименьшее значение выражения будет 2 при х=-4.
тюльпанов: 3/10
нарциссов: 4/7