1) x²+3x-40= 0;
2) 13х²-65х-468=0.
есть, как минимум, два сделать это быстро:
1) корни х₁= -5 и х₂= 8
По теореме Виета
х²+рх+q=0
x₁*x₂=q
x₁+x₂=-p
q=-5*8= -40;
-p= -5+8= -3; →p=3
x²+3x-40= 0.
(Можем домножить уравнение на любое число- корни не изменятся,
Например: 3(х²+3х-40)=0*3;
3х²+9х-120=0; - тоже правильный ответ)
2) Любой квадратный трёхчлен ax²+bx+c можно представить в виде множителей:
ax²+bx+c=a (x-x₁)(x-x₂), где x₁, x₂ — корни квадратного уравнения ax₂+bx+c=0.
Поэтому для корней x₁=9, x₂= -4 возьмём любое значение а. Например я хочу а=13 ( Вы можете взять другое)
13(х-9)(х-(-4))=(13х-117)(х+4)=13х²+52х-117х-468=13х²-65х-468.
13х²-65х-468=0.
(Если разделим на 13, то есть а=1 получим х²-5х-36=0 -тоже ответ).
Попробуйте сами- это интересно и ответ будет только Ваш.
нет, нельзя
Объяснение:
Очевидно, что производя наши действия, мы не можем получить трехзначное число. Действительно, если мы получим 3-х значное число, нам ни как его не уменьшить до двузначного: умножение на 2 его только будет увеличивать, а разрешенной перестановкой из трехзначного нельзя получить двузначное.
Итак, будем умножать 1 на 2 пока не получим первое двузначное число. как только мы его получим, то в дополнение к умножению на 2 мы можем пользоваться перестановкой.
1) 1*2*2*2*2=16
теперь на надо решить умножать его дальше на 2 или переставить цифры.
Допусим мы переставим цифры и получим 61. Если мы умножим его на 2, то получим 3-х значное число, что нам не подходит. Значит надо прододить умножать 16 дальше.
2) 16*2=32
Опять начнем с прерстановки. 23. Умножим на 2, получим 46
2а) перестановка 46 нам даст 64 и дальнейше уменжение приведет опять к 3-х значному числу.
2б) 46*2=92. Перестановка. 29. Умножаем на 2. 58. перестановка 85. опять тупик.
3) 32*2=64. мы этот случай уже рассмотрели в варианте 2а)
Болше вариантов не осталось.
ответ: нет, нельзя