М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
zarina20178
zarina20178
17.09.2020 03:02 •  Алгебра

3. Функция задана формулой y=-2x+4
a) Найдите область определения
b) Найдите координаты точки пересечения графика функции с осью абсцисс
c) Возрастающей или убывающей является функция
ОЧЕНЬ

👇
Открыть все ответы
Ответ:
ApokalipsisZnanij
ApokalipsisZnanij
17.09.2020

x = п/8 + пn/2

Перебираем все целые числа n

если n=0, то x= п/8 (корень подходит)

если n=1, то x= 5п/8 (корень подходит)

если n=2, то x= 9п/8 (корень не подходит, потому что больше п), следовательно, все n, которые больше 2, не будут удовлетворять условию. Переходим на отрицательные.

если n=-1, то x= -3п/8 (корень подходит)

если n=-2, то x= -7п/8 (корень подходит)

если n=-3, то x= -11п/8 (корень не подходит, потому что меньше -п), следовательно, все n, которые меньше -3, не будут удовлетворять условию.

 

х = -п/4 + пn/2 

Перебираем все целые числа n

если n=0, то x= -п/4 (корень подходит)

если n=1, то x= п/4 (корень подходит)

если n=2, то x= 3п/4 (корень подходит)

если n=3, то х= 5п/4 (корень не подходит, потому что больше п), следовательно, все n, которые больше 3, не будут удовлетворять условию. Переходим на отрицательные.

если n=-1, то x= -3п/4 (корень подходит)

если n=-2, то x= -5п/4 (корень не подходит, потому что меньше -п), следовательно, все n, которые меньше -2, не будут удовлетворять условию.

4,5(83 оценок)
Ответ:
Fanny321
Fanny321
17.09.2020

Находим производную:

y=(2x-23)^{2}(4-x)+5\\ y'= ((2x-23)^{2})'(4-x)+(2x-23)^{2}(4-x)'=\\=2 \cdot (2x-23)(2x-23)'(4-x) -(2x-23)^{2}= \\ =4(2x-23)(4-x)-(2x-23)^{2}

Упростим.

4(2x-23)(4-x)-(2x-23)^{2}= (2x-23)(4(4-x)-2x+23)=\\= (2x-23)(39-6x)

Найдем периоды возрастания и убывания:

(2x-23)(39-6x)0\\ 1) \left \{ {{2x-230} \atop {39-6x0}} \right.\\ \left \{ {{x11,5} \atop {x<6,5}} \right.\\ 2) \left \{ {{2x-23<0} \atop {39-6x<0}} \right.\\ \left \{ {{x<11,5} \atop {x6,5}} \right.\\ 6,5<x<11,5

На промежутке от 6,5 до 11,5 функция возрастает, на остальном она убывает. Имеем две точки экстремума:

6,5 - точка минимума

11,5 -  точка максимума.

У нас пулучается, что функция примет свое наименьшее значение в точке минимума, то есть в точке 6,5. Подставляем в функцию:

y=(2x-23)^{2}(4-x)+5 = (2\cdot 6,5-23)^{2}(4-6,5)+5 = -245

 

График для наглядности.

 

З.Ы. Здесь небольшой подвох есть. В точке х =14, у тоже будет равен -245. Поскольку, в рассматриваемом промежутке [0; 14), точка 14 не включена, то тогда мы не берем ее в расмотрение.


Найти наименьшие значение функции с производной y=(2x-23)^2*(4-x)+5 на промежутке [ 0; 14)
4,6(53 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ