М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
СерегаБатя
СерегаБатя
20.03.2020 06:33 •  Алгебра

F(x) = 2x - 5;
надо найти:
f(3x) ;
f(-4x);

👇
Открыть все ответы
Ответ:
даша3649
даша3649
20.03.2020

Пусть х см - ширина прямоугольника. Тогда, (х+4) см - длина прямоугольника. Составим уравнение:

x(x+4)=60

Раскроем скобки и перенесем все в левую часть:

x^2+4x-60=0

Решать уравнение будем по формуле корней для уравнения с четным вторым коэффициентом:

D_1=2^2-1\cdot(-60)=64

x_1=-2-8=-10\\x_2=-2+8=6

Поскольку сторона не может выражаться отрицательным числом, то первый корень не удовлетворяет условию задачи. Тогда:

x=6\ (sm) - ширина прямоугольника

x+4=6+4=10\ (sm) - длина прямоугольника

Составим выражения для периметра:

P=2(x+x+4)=2(2x+4)=4x+8

Находим периметр:

P=4\cdot6+8=32\ (sm)

ответ: стороны прямоугольника 6 см и 10 см; периметр прямоугольника 32 см

4,4(31 оценок)
Ответ:
MissDiana1111
MissDiana1111
20.03.2020
Арифметическая прогрессия - некоторая последовательность, упорядоченные элементы которой рекурсивно (то есть выведены из некоторого правила, которое сводится само к себе) заданы некоторым числом q, таким, что a(i)=a(i-1)+q (само правило).
Суммой n элементов прогрессии будет число, заданное формулой:
S= \frac{a(1)+a(n)}{2} *n
Кстати, эту формулу легко запомнить, если почитать эдакую легенду про великого математика Гаусса. В школе он великолепно решал задачи по математике и вел себя отвратительно (много шумел и не сидел на месте), поскольку решал все много быстрее остальных. И вот учитель решил его нагрузить такой задачкой(дабы заставить его хоть немного посидеть на месте :) ) - сосчитать сумму всех натуральных чисел от 1 до 100) Учитель думал, что Гаусс будет долго работать над этой задачкой, ан нет - он, посмотрев на сумму, складывая такие элементы, как 1 и 99, 2 и 98, что ответом будет как раз число S и буквально за две минуты справился с задачей, чем немало удивил учителя).
Давайте попробуем буквально, можно сказать, повторить путь маленького Гаусса, однако теперь нам неизвестна не сумма, а количество элементов (понадобится уравнение). Однако нам известен только последний элемент прогрессии, а в формуле фигурирует еще и первый.
Давайте выразим a(n) через a(1).
a(n)=a(1)+d(n-1)
То есть a(1)=a(n)-d(n-1)
Подставим в формулу
S= \frac{a(n)-d(n-1)+a(n)}{2} *n= \frac{2na(n)-dn(n-1)}{2}
2na(n)-dn(n-1)=2S
2na(n)-dn^2+dn-2S=0
-dn^2+n(2a(n)+d)-2S=0
dn^2-(2a(n)+d)n+2S=0
Все коэффициента известны, можно решать уравнение.
d=12; a(n)=15, S=456 
И вот тут возникают проблемы. При выводе формулы получаю абсолютно верный, справедливый результат (описанный выше). Тогда как дискр квадратного уравнения отрицателен выходит (и при a(n)=-15, и при 15)
Вероятнее всего, у вас где-то ошибка в задании, либо же ответом будет: такой прогрессии не существует. И, вообще говоря, логично -
разность положительна, последний член всего-лишь 15, а сумма АЖ 456. Перепроверьте задание :)
dn^2-(2a(n)+d)n+2S=0
Дорешаю уравнение (сделаю вывод хотя-бы, потом просто подставите в результат значения).
D=(2a(n)+d)^2-8dS
D=4a^2(n)+4da(n)+d^2-8dS=4a^2(n)+d(d-8S+4a(n))
Тогда искомый n равен
n= \frac{(2a(n)+d)+ \sqrt{4a^2(n)+d(d-8S+4a(n))} }{d}
4,4(47 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ