Для начала определим точку пересечения прямых. Для этого приравняем оба уравнения:
-7/8х + 17 = -3/5 х - 16 -7/8х + 3/5х = -16 - 17 7/8х - 3/5х = 16+17 11/40 х = 33 х = 33 : 11/40 = 33 * 40/11 х = 120 Чтобы найти у подставляем х в любое из этих уравнений. Я выбрала второе. у = - 3/5 * 120 - 16 = -72-16 = -88 Точка пересечения: (120; -88) Если график уравнения проходит через эту точку, то подставив ее координаты мы должны получить верное выражение: у+рх =0 -88+120р=0 120р = -88 р = -88/120 р = -11/15 ответ: -11/15
2.Найдите наибольшее значение функции y=-x^2-6x+5 на промежутке [-4,-2]
y=-x^2-6x+5 y`=-2x-6 y`=0 при х=-3 - принадлежит [-4,-2] у(-4)=-(-4)^2-6*(-4)+5=13 у(-3)=-(-3)^2-6*(-3)+5=14 у(-2)=-(-2)^2-6*(-2)+5=13
наибольшее значение функции на промежутке [-4,-2] max(y)=14
3. y=корень(3) - горизонтальная прямая касательная к прямой в любой точке совпадает с прямой к оси абсцисс под углом 30 градусов касательная к прямой у=корень(3) быть не может
4. y=(x-1)^3-3(x-1) =(x-1)((x-1)^2-3)=(x-1-корень(3))*(x-1)*(x-1+корень(3)) кривая третей степени, симметричная относительно точки x=1; у=0 имеет локальный минимум и локальный максимум имеет три нуля функции имеет одну точку перегиба расчетов не привожу так как это уже 4 задание в вопросе
график во вложении
3*. - для измененнного условия y=корень(3x) y`=1/2*корень(3/x) y`=tg(pi/6)=корень(3)/3=1/2*корень(3/x)
-7/8х + 17 = -3/5 х - 16
-7/8х + 3/5х = -16 - 17
7/8х - 3/5х = 16+17
11/40 х = 33
х = 33 : 11/40 = 33 * 40/11
х = 120
Чтобы найти у подставляем х в любое из этих уравнений. Я выбрала второе.
у = - 3/5 * 120 - 16 = -72-16 = -88
Точка пересечения: (120; -88)
Если график уравнения проходит через эту точку, то подставив ее координаты мы должны получить верное выражение:
у+рх =0
-88+120р=0
120р = -88
р = -88/120
р = -11/15
ответ: -11/15