Нет, не могли. Среди чисел от 1 до 72 имеется ровно 72/9=8 чисел кратных 9. Среди чисел от 1 до 72 имеется ровно 72/3-72/9=16 кратных 3, но не кратных 9. Найдем максимально возможное количество столбцов, в которых произведения их элементов будут кратны 9. Максимальное количество таких столбцов может получиться, когда все числа кратные 9 находятся в разных столбцах, а числа кратные только 3 (но не кратные 9) находятся по два в каждом столбце. Итак, максимальное количество столбцов, в которых произведения четверок кратны 9 равно 16/2+8=16. По признаку делимости на 9 сумма цифр произведений элементов таких столбцов тоже кратна 9. Значит среди полученных сумм цифр не более 16 штук кратны 9, и кратные 9 среди них обязательно будут. Значит суммы цифр для всех столбцов не могут быть равными, т.к. иначе суммы цифр всех 18 произведений были бы кратны 9, а мы только что вывели, что их не более 16 штук. Противоречие.
Нет, не могли. Среди чисел от 1 до 72 имеется ровно 72/9=8 чисел кратных 9. Среди чисел от 1 до 72 имеется ровно 72/3-72/9=16 кратных 3, но не кратных 9. Найдем максимально возможное количество столбцов, в которых произведения их элементов будут кратны 9. Максимальное количество таких столбцов может получиться, когда все числа кратные 9 находятся в разных столбцах, а числа кратные только 3 (но не кратные 9) находятся по два в каждом столбце. Итак, максимальное количество столбцов, в которых произведения четверок кратны 9 равно 16/2+8=16. По признаку делимости на 9 сумма цифр произведений элементов таких столбцов тоже кратна 9. Значит среди полученных сумм цифр не более 16 штук кратны 9, и кратные 9 среди них обязательно будут. Значит суммы цифр для всех столбцов не могут быть равными, т.к. иначе суммы цифр всех 18 произведений были бы кратны 9, а мы только что вывели, что их не более 16 штук. Противоречие.
(x-5)(x+5)/(x-5)(x+2) = (x+5)/(x+2);
x^2-3x-10=0
находим корни
D=49; sqrt(D)=7
x1=5
x2=-2
->> x^2-3x-10 = (x-5)(x+2)