Объяснение:
Для выполнения разложения на множители выражения 2x2 + 14x + 24, которое есть квадратным трехчленом мы применим ряд следующих действия.
Начнем с того, что вспомним формулу:
ax2 + bx + c = a(x - x1)(x - x2).
А x1 и x2 это корни уравнения ax2 + bx + c = 0.
Итак, переходим к решению уравнения:
2x2 + 14x + 24 = 0;
x2 + 7x + 12 = 0;
D = b2 - 4ac = 72 - 4 * 1 * 12 = 49 - 48 = 1;
x1 = (-b + √D)/2a = (-7 + √1)/2 * 1 = (-7 + 1)/2 = -6/2 = -3;
x2 = (-b - √D)/2a = (-7 - √1)/2 * 1 = (-7 - 1)/2 = -8/2 = -4.
2x2 + 14x + 24 = 2(x + 3)(x + 4).
1. Выпишем числа из знаменателей исходных дробей и разложим каждое из них на простые множители.
60 = 2 * 2 * 3 * 5
540 = 2 * 2 * 3 * 3 * 3 * 5
20 = 2 * 2 * 5
Вычеркиваем все множители для 540 и 20, которые есть в разложении 60. Выделим их жирным:
540 = 2 * 2 * 3 * 3 * 3 * 5
20 = 2 * 2 * 5
2. Выписываем все множители, входящие в первое число (60):
2 * 2 * 3 * 5
3. Домножаем на недостающие множители из разложений остальных чисел (это числа, которые не выделены жирным):
2 * 2 * 3 * 5 * 3 * 3 = 540
Таким образом, наименьший общий знаменатель = 540. Приведем наши дроби к наименьшему общему знаменателю: