Подробное объяснение: 1) Ищем нули функции: первая скобка равна нулю при х=-2 вторая скобка равна нулю при х=4 2) Рисуем числовую ось и расставляем на ней найденные нули функции - точки -2 и 4 (-2)(4) Точки рисуем с пустыми кружочками ("выколотые"), т.к. неравенство у нас строгое (знак < )
3) Начинаем считать знаки на каждом интервале, начиная слева-направо. Для этого берём любую удобную для подсчёта точку из интервала, подставляем её вместо икс и считаем знак: 1. х=-100 -100+2 <0 знак минус -100-4 <0 знак минус минус*минус=плюс Ставим знак плюс в крайний левый интервал + (-2)(4)
2. аналогично, х=0 0+2 >0 знак плюс 0-4 <0 знак минус плюс*минус=минус + _ (-2)(4)
3. x=100 100+2>0 знак плюс 100-4>0 знак плюс плюс*плюс=плюс + - + (-2)(4)
Итак, знаки на интервалах мы расставили. Смотрим на знак неравенства: < 0 Значит, нам надо взять только те интервалы, где стоят минусы. В данном случае, такой интервал один (-2;4) Это и есть ответ.
Теперь краткая запись решения: (х+2)(х-4)<0 + - + (-2)(4)
Физический процесс протекает во времени, поэтому все физические формулы, описывающие явления материального мира во времени являются функциями, описывающими реальные физические процессы. В такие уравнения время входит в качестве переменного параметра, а не константы (как, например, в формуле для периода), либо входит опосредованно в другие величины, такие, например, как скорость, электрический ток и т.п. Некоторые уравнения описывают процессы и одновременно состояния, а поэтому не содержат непосредственно в себе параметра времени, а лишь показывают некоторые частные состояния системы, как, например уравнение Менделеева-Клайперона (уравнение идеального газа).
Уравнение равномерного движения – это функция, описывающая реальный физический процесс равномерного движения:
;
Уравнение равномерного прямолинейного движения – это функция, описывающая реальный физический процесс прямолинейного движения в векторном виде:
;
Следствие для скорости из уравнения определения ускорения – это функция, описывающая реальный физический процесс равномерного изменения скорости:
либо в векторном виде: ;
Уравнение равнопеременного движения – это функция, описывающая реальный физический процесс равнопеременного движения:
либо в векторном виде: ;
Второй Закон Ньютона – это функция, описывающая реальный физический процесс динамики движения:
либо в векторном виде: ;
Уравнение равномерного движения по окружности – это функция, описывающая реальный физический процесс равномерного движения по окружности:
;
Уравнение движения при гармонических колебаниях – это функция, описывающая реальный физический процесс гармонического колебания:
;
Следствие для скорости из уравнения гармонических колебаний – это функция, описывающая реальный физический процесс изменения скорости в гармоническом колебании:
;
Следствие для ускорения из уравнения гармонических колебаний – это функция, описывающая реальный физический процесс изменения ускорения в гармоническом колебании:
;
Следствие для энергии из уравнения определения теплоёмкости – это функция, описывающая реальный физический процесс нагревания:
где либо в удельном виде: ;
Следствие для энергии из уравнения определения теплоты плавления и кристаллизации – это функция, описывающая реальный физический процесс плавления и кристаллизации:
;
Следствие для энергии из уравнения определения теплоты парообразования и конденсации – это функция, описывающая реальный физический процесс парообразования и конденсации:
;
Следствие для энергии из уравнения определения теплоты горения – это функция, описывающая реальный физический процесс горения:
;
Уравнение идеального газа – это многопараметрическая функция, описывающая все физические процессы газов низких давлений:
;
Уравнения определения тока – это функция, описывающая реальный физический процесс движени заряженных частиц:
;
Закон Фарадея – это многопараметрическая функция, описывающая гальванический процесс:
где ;
Закон Ома – это функция, описывающая реальный физический процесс движения заряженных частиц в однородном проводнике:
;
Закон Джоуля-Ленца – это функция, описывающая реальный физический процесс превращения энергии в электрических цепях:
либо в мощностном виде: ;
Закон Ампера (Второй Закон Максвелла) – это функция, описывающая реальный физический процесс воздействия магнитного поля на проводник с током:
;
Закон Лоренца (Второй Закон Максвелла) – это функция, описывающая реальный физический процесс воздействия магнитного поля на движущуюся частицу:
;
Закон Фарадея-Ленца электромагнитной Индукции (Третий Закон Максвелла) – это функция, описывающая реальный физический процесс порождения вихревого электрического поля при изменении магнитного поля:
Подробное объяснение:
1) Ищем нули функции:
первая скобка равна нулю при х=-2
вторая скобка равна нулю при х=4
2) Рисуем числовую ось и расставляем на ней найденные нули
функции - точки -2 и 4
(-2)(4)
Точки рисуем с пустыми кружочками ("выколотые"), т.к.
неравенство у нас строгое (знак < )
3) Начинаем считать знаки на каждом интервале, начиная
слева-направо. Для этого берём любую удобную для подсчёта
точку из интервала, подставляем её вместо икс и считаем знак:
1. х=-100 -100+2 <0 знак минус
-100-4 <0 знак минус
минус*минус=плюс
Ставим знак плюс в крайний левый интервал
+
(-2)(4)
2. аналогично,
х=0 0+2 >0 знак плюс
0-4 <0 знак минус
плюс*минус=минус
+ _
(-2)(4)
3. x=100 100+2>0 знак плюс
100-4>0 знак плюс
плюс*плюс=плюс
+ - +
(-2)(4)
Итак, знаки на интервалах мы расставили.
Смотрим на знак неравенства: < 0 Значит, нам надо взять
только те интервалы, где стоят минусы.
В данном случае, такой интервал один (-2;4)
Это и есть ответ.
Теперь краткая запись решения:
(х+2)(х-4)<0
+ - +
(-2)(4)
x∈(-2;4)
ответ: (-2;4)