составьте многочлен p (x)=2p1(x)+p2(x)-p3(x) и запишите его в стандартном виде,если:
1. p1(x)=-3x²
p2(x)=1-x
p3(x)=x²-4x
p (x)=2*(-3x²)+1-x-(x²-4x)=-6x²+1-x-x²+4x=-7x²+3x+1
2. a)(2m+1)(4-m)=8m-2m²+4-m=-2m²+7m+4
б)25m^2-30mn^2):(-5mn)=25m²:(-5mn)-30mn²:(-5mn)=-5m/n+6n
3. упростите используя формулы окращённого умножения:
(3x+4)(4-3x)-(2x+1)²=16-9x²-(4x²+4x+1)=16-9x²-4x²-4x-1=-13x²-4x+15
4. докажите что выражения не зависит от переменной:
3*(1-2y)(1+2y+4y²)+4*(6y³-1)=3*(1-8y³)+24y³-4=3-24y³+24y³-4=-1 значит не зависит от переменной
a) x∈ (-∞;3)
b) x∈ (-∞;0] ∪ [4;+∞)
c) x∈ (-∞;0)∪(0;2/3)
d) x∈ [-1/2;1) ∪ (1;+∞)
Объяснение:
a) f(x)=√(-x+3);
-x+3≥0; -x≥-3; x≤3.
ОО: x∈(-∞;3).
b) f(x)=√(0,5x²-2x); 0,5x²-2x≥0; x(0,5x-2)≥0;
x≥0;
0,5x-2≥0; x≥2/0,5; x≥4; x∈[4;+∞);
x≤0;
0,5x-2≤0; x≤2/0,5; x≤4; x∈(-∞;0];
OO: x∈(-∞;0] ∪ [4;+∞);
c) f(x)=ln(2/x-3);
2/x-3>0; 2/x>3; x<2/3; x∈(-∞;2/3);
x≠0; x∈(-∞;0)∪(0;+∞)
OO: x∈(-∞;0)∪(0;+∞) ∩ (-∞;2/3) ⇒ x∈(-∞;0)∪(0;2/3)
d) f(x)=√(3/(x-1)+2);
3/(x-1)+2≥0; 3+2(x-1)≥0; x≥-1/2; x∈[-1/2;+∞)
x-1≠0; x≠1; x∈(-∞;1)∪(1;+∞)
OO: x∈[-1/2;+∞) ∩ (-∞;1)∪(1;+∞) ⇒ x∈[-1/2;1)∪(1;+∞)