Объяснение:
Папа подарил Вите замечательный ножик. Чего только не предлагали ребята ему в обмен на ножик! Но Витя и слушать не хотел.
Ножик был очень красивый. Он имел много предметов. Два острых лезвия,
которыми можно было заточить карандаш, резать хлеб и овощи, легко срезать ветки. Снабжён ножницами, вилкой и ложкой. Было тут и шило и даже удобная пилка, которой можно перепилить небольшие металлические прутки. Такой ножик необходимая вещь в лесу, в походе и в дороге.
В школе Витя увидел в руках Петьки снегиря, к лапке которого была привязана нитка. Петька то отпустить снегиря, то опять притянет к себе. Снегирь взмахивал крыльями, пытаясь улететь, но нитка удерживала бедную птичку. Снегирь был так измучен, что всё слабей и слабей делал попытки улететь от мучителя. От усталости его головка вяло склонялась на бок, а глаза закрывались. А Петька весело наслаждался измученой птичкой.
У Вити сжалось сердце, при виде таких издевательств. Он решил снегиря. Предлагал Петьке разные игрушки, вещички, но Петька ни на что не соглашался. Тогда Витя решился на самое дорогое, что у него было. Он предложил, подаренный ему ножик. Петька осмотрел нож, подумал и согласился на обмен.
Витя отдал Петьке ножик, и обмен состоялся. Витя снял нитку с лапки птицы, взлез на подоконник и открыл форточку. Поднёс к форточке руку с измученным снегирём. Птичка почувствовала свежую струю воздуха. Головка поднялась на встречу свободе. Крылышки его расправились. На какое то мгновение снегирь замер, как бы выражая благодарность своему Потом маленькое тельце птички встрепенулось в прыжке. Он взмахнул крыльями и радостно взмыл на свободу.
Витя восторженно посмотрел в след улетающей птичке. О ножике, подаренном ему отцом, Витя ни чуть не жалелк
1) tg x + 3/tg x = 4, ОДЗ tg x <> 0
множим уравнение на tg(x), который по ОДЗ не ноль
(tg x)^2 - 4 tg x + 3 = 0
видим здесь квадратное уравнение относительно tg x.
а ещё видим, что сумма показателей степеней равна 1-4+3 = 0, поэтому один корень =1, второй по т.Виетта =3
уравнение распадается на совокупность
tg x = 1
tg x = 3
выписываем решение:
x = arctg(1) + pi n, где ncZ
x = arctg(3) + pi k, где kcZ
ну можно ещё вспомнить, что arctg(1) = pi/4
2) вспоминаем формулу косинуса двойного угла:
cos 2a = 2 cos^2 a - 1
если a = x/2, то исходное уравнение может быть представлено как
cos x + 1 + sin x = 0
вобщем, тут уже очевидно, что либо cos x =0, sin x =-1, либо cos x=-1, sin x =0
но чтобы совсем честно решать, придётся поколдовать.
синус направо и всё в квадрат!
(cos x +1)^2 = sin^2 x
cos^2 x + 2 cos x + 1 = 1 - cos^2 x
2 cos^2 x + 2 cos x = 0
cos x (cos x + 1) = 0
произведение обращается в ноль если хотя бы один из множителей обращается в ноль. значит опять совокупность:
cos x = 0
cos x = -1
x = pi/2 + pi n , ncZ,
x = pi + 2pi k, kcZ
но тут небольшая грабля. чуть выше мы возводили к вадрат. а нулевому косинусу соответствуют два значения синуса: +1 и -1. и один из них нам не подходит.
вобщем, проверяем корни и убеждемся, что из первой последователности половина значений выпадает (pi/2 + 2pi n НЕ являются корями. а pi/2 + pi + 2pi n - удовлетворяют)
ответ
x = 3pi/2 + 2pi n , ncZ,
x = pi + 2pi k, kcZ