1. 1)Преобразует левую часть уравнения так, чтобы получился квадрат выражения с х. х^2-4х+3=0, (х^2-2*(2*х)+4)-4+3=0, (х-2)^2-1=0, (х-2)^2=1, х-2=1 или х-2=-1, х=3 или х=1. 2) представим левую часть в виде произведения: х^2+9х=0, х(х+9)=0, х=0 или х=-9. 2. Подставим в уравнение известный корень и найдем а: 4^2+4-а=0, 16+4-а=0, а=20. Разложим левую часть на множители, зная что один из них (х-4): х^2+х-20=х2-4х+4х+х-20=х(х-4)+5х-20=х(х-4)+5(х-4)=(х-4)(х+5), то есть (х-4)(х+5)=0, второй корень х=-5. ответ: а=20, второй корень (-5). Во втором задании можно просто подставить а и решить уравнение, найдя 2 корня.
Чтоб проверить проходит ли график уравнения через точку, нужно, значение точки подставить в уравнение.
а) А(3; 1), 3х + 4у = 2,
3 * 3 + 4 * 1 = 2;
9 + 4 = 2;
13 ¥ 2. (¥ - не равно)
Значит, график уравнения не проходит через данную точку.
б) В(2; 1), 3х + 4у = 2,
3 * 2 + 4 * 1 = 2;
6 + 4 = 2;
10 ¥ 2.
Значит, график уравнения не проходит через данную точку.
в) С(- 2; - 2), 3х + 4у = 2,
3 * (- 2) + 4 * (-.2) = 2;
- 6 - 8 = 2;
- 14 ¥ 2.
Значит график уравнения не проходит через данную точку.
ответ: точки не принадлежат графику