М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
bufo2012
bufo2012
10.04.2020 23:05 •  Алгебра

График квадратичной функции не пересекает ось ох, если​

👇
Ответ:
pаvеl2
pаvеl2
10.04.2020
Чтобы ответить на данный вопрос, необходимо рассмотреть свойства графиков квадратичных функций.

Квадратичная функция имеет вид f(x) = ax^2 + bx + c, где a, b и c - это коэффициенты.

Уравнение оси Ox имеет вид y = 0, так как ось Ox находится на уровне y = 0. Следовательно, для доказательства того, что график квадратичной функции не пересекает ось Ox, нужно найти условия, при которых уравнение f(x) = ax^2 + bx + c = 0 не имеет действительных корней, то есть нет значений x, при которых f(x) = 0.

Для этого используем дискриминант - это выражение D = b^2 - 4ac, которое позволяет определить, сколько действительных корней имеет уравнение.

1. Если D > 0, то уравнение имеет два различных действительных корня. В этом случае график квадратичной функции пересекает ось Ox в двух точках.

2. Если D = 0, то уравнение имеет один действительный корень кратности два. То есть график касается оси Ox, но не пересекает ее.

3. Если D < 0, то уравнение не имеет действительных корней. В этом случае график квадратичной функции не пересекает ось Ox и не касается ее.

Исходя из этого, ответ на вопрос будет следующим: график квадратичной функции не пересекает ось Ox, если дискриминант D < 0.
4,7(85 оценок)
Проверить ответ в нейросети
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ