Объяснение:
sina·sin2a·sin3a<3/4
-1≤sinx≤1
sina·sin3a=0,5(cos(3a-a)-cos(3a+a))=0,5(cos2a-cos4a)
cos4asin2a=0,5(sin(4a+2a)-sin(4a-2a))=0,5(sin6a-sin2a)
cos2asin2a=0,5·2cos2asin2a=0,5sin4a
sina·sin2a·sin3a=sin2a·(sina·sin3a)=0,5(cos2a-cos4a)sin2a=
=0,5(cos2asin2a-cos4asin2a)=0,5(0,5sin4a-0,5(sin6a-sin2a))=
=0,25(sin4a-sin6a+sin2a)≤0,25(1+1+1)=3/4
Равенство в последнем неравенстве достигается, тогда и только тогда, когда выполняются одновременно три следующих равенства
sin4a=1; sin6a=-1; sin2a=1
Пусть sin2a=1⇒1=sin4a=2sin2acos2a=2cos2a⇒cos2a=0,5
sin²2a+cos²2a=1²+0,5²=1,25>1 , что невозможно.
Из этого следует, что доказанное неравенство строгое. Т.е.
sina·sin2a·sin3a<3/4.
Ч.т.д
Объяснение:
Дана функция у=2x-3
Уравнение линейной функции прямая линия.
Придаём значения х, подставляем в уравнение, вычисляем у, записываем в таблицу. Для построения прямой достаточно двух точек, для точности построения определим три.
Таблица:
х -1 0 1
у -5 -3 -1
1)Чтобы найти значение у, нужно известное значение х=3 подставить в уравнение функции и вычислить значение у:
у=2*3-3=3 при х=3 у=3
2)Чтобы найти значение х, нужно известное значение у= -1 подставить в уравнение функции и вычислить значение х:
-1=2х-3 у= -1 при х=1
-2х= -3+1
-2х= -2
х=1
16 и 1. Сумма квадратов: 256 +1 = 257