Попробовал решить. не благодари
В решении.
Объяснение:
Найти а и записать формулу у=kх+в, если график у = (2 + а)х - 2а + 3 проходит через точку А(-2; -4).
а) Найдите значение а;
Подставить известные значения х и у (координаты точки) в уравнение, вычислить а:
у = (2 + а)х - 2а + 3
-4 = (2 + а)*(-2) - 2а + 3
-4 = -4 - 2а - 2а + 3
4а = 3
а = 3/4 (деление)
а = 0,75;
б) запишите функцию в виде у = kx + b;
Коэффициент k = (2 + а) = 2 + 0,75 = 2,75;
k = 2,75;
b = -2а + 3 = -1,5 + 3 = 1,5;
b = 1,5;
Уравнение функции:
у = 2,75х + 1,5.
Эта прямая проходит через точку А(-2; -4), проверено.
Первый решения системы уравнений называют подстановки или «железобетонным».
Название «железобетонный» метод получил из-за того, что с этого метода практически всегда можно решить систему уравнений. Другими словами, если у вас не получается решить систему уравнений, всегда пробуйте решить её методом подстановки.
Разберем подстановки на примере.
x + 5y = 7
3x − 2y = 4
Выразим из первого уравнения «x + 5y = 7» неизвестное «x».
Перенесём в первом уравнении «x + 5 y = 7» всё что содержит «x» в левую часть, а остальное в правую часть по правилу переносу.
При «x» стоит коэффициент равный единице, поэтому дополнительно делить уравнение на число не требуется.
x = 7 − 5y
3x − 2y = 4
Теперь, вместо «x» подставим во второе уравнение полученное выражение
«x = 7 − 5y» из первого уравнения.
x = 7 − 5y
3(7 − 5y) − 2y = 4
Подставив вместо «x» выражение «(7 − 5y)» во второе уравнение, мы получили обычное линейное уравнение с одним неизвестным «y». Решим его по правилам решения линейных уравнений.
Чтобы каждый раз не писать всю систему уравнений заново, решим полученное уравнение «3(7 − 5y) − 2y = 4» отдельно. Вынесем его решение отдельно с обозначения звездочка (*).
x = 7 − 5y
3(7 − 5y) − 2y = 4 (*)
(*) 3(7 − 5y) − 2y = 4
21 − 15y − 2y = 4
− 17y = 4 − 21
− 17y = − 17 | :(−17)
y = 1
Мы нашли, что «y = 1». Вернемся к первому уравнению «x = 7 − 5y» и вместо «y» подставим в него полученное числовое значение. Таким образом можно найти «x». Запишем в ответ оба полученных значения.
x = 7 − 5y
y = 1
x = 7 − 5 · 1
y = 1
x = 2
y = 1
ответ: x = 2; y = 1
Источник: http://math-prosto.ru