Множество значений функции y = f(x) на некотором интервале x представляет собой множество всех значений, которые данная функция принимает при переборе всех значений x∈X.
Мы знаем, что производная функции будет положительной для всех значений x, расположенных в интервале [-1; 1], то есть на протяжении всей области определения функция арксинуса будет возрастать. Значит, самое маленькое значение она примет при x, равном -1, а самое большое – при x, равном 1
Таким образом, область значений функции арксинус будет равна E(arcsin x)=[-
y=-x+2
Объяснение:
У точки А х=0 у=2
у точки В х=3 у=-1
Подставляем в уравнение прямой
2=к*0+b
b=2
-1=k*3+2
3k=-1-2
3k=-3
k=-3/3
k=-1
y=-x+2