Объяснение: ( ^ -знак степени x^2 -это х в квадрате)
5) x^2 -3x-5=7-2x, u 7-2x>0, x^2-x-12=0, u x<3,5, корни уравнения
x=-3, x=4(не подходит), отв. х=-3
6) Пусть log0,2 x =t, t^2+t-6=0, корни t=-3 u t=2,
тогда, log0,2 x=-3, x=(1/5)^-3=5^3=125 u log0,2 x=2, x=0,2^2=0,04
ответ: 125; 0,04
7) система 2x-3<= x^2 -6, 2x-3>0, (основание < 1, знак поменяли)
x^2-6-2x+3>=0, x^2 -2x -3>=0, корни -1 и 3 и x>1,5, метод интервалов
+[-1] - [3] + , ответ: [3; +Беск.)
8) lg^2 x +3lg x-4<0 , t=lgx, t^2 +3t -4<0, t= -4, t=1, метод интервалов,
+( -4) - (1)+ t -4<t<1, обратная замена,
-4 <lgx <1, lg10^ (-4) <lgx <lg10, 10^(-4) <x <10, ответ (0,0001;10)
1. поработаем со знаменателем первой дроби. это формула сокращенного умножения. (х+2)(х-2)- будет являться общим знаменателем.
2. 3 переносим в левую часть, поменяв знак на противоложный, тк переносим через =. подгоним все под общий знаменатель и получим:
4-(х+2)-3(х²-4)\(х-2)(х+2)=0
3. дробь равна 0, когда числитель равен 0, а знаменатель не равен. потому знаменатель отбрасываем. НО. делить на 0 нельзя, поэтому нельзя, чтобы в знаменателе получился 0. х не равно +-2. получим:
4-(х+2)-3(х²-4)=0
4. раскроем скобки. если перед скобкой стоит -, то все знаки меняются на противоположные, а скобки убираются. если перед скобкой стоит умножение, то нужно член, стоящий перед скобкой, умножить на каждый член в скобки и скобки уберутся. получим
4-х-2-3х²+12=0
5. приведем подобные и получим:
-3х²-х+14=0
для удобства умножим все на -1 ( не обязательно):
3х²+х-14=0
6.D= в²-4ас
D= 1+168=169=13²
х1=-1+13\6=2
х2= -1-13\6= -7\3
ответ: -7\3, 2