Из трех одноклассниц Марина, Вера и Даша назвать всевозможные варианты, как они могут разместиться за одной партой. Решение. Марина и Вера ; Марина и Даша ; Вера и Даша. Можно записывать МВ, МД и ВД.
1) Боря берет конфеты по арифметической прогрессии: 1, 3, 5, ... a1(1) = 1; d1 = 2 Миша - тоже по арифметической прогрессии a2(1) = 2; d2 = 2 Всего Боря взял S1(n) = (2a1 + d(n-1))*n/2 = (2 + 2(n-1))*n/2 = (1 + n - 1)*n = n^2 = 60 7 < n < 8 Значит, n = 7, предпоследний раз Боря взял a1(7) = 1 + 2*6 = 13. И у Бори получилось S1(7) = 7^2 = 49 конфет. Но мы знаем, что всего он взял 60 конфет. Значит, в последний раз 11. Миша последний раз взял 14. Это тоже 7-ой раз. Всего Миша взял S2(7) = (2*2 + 2*6)*7/2 = 2*8*7/2 = 56 Всего конфет было 60 + 56 = 116
2) 231 = 3*7*11 На каждом этаже квартир больше 2, но меньше 7, то есть 3. Допустим, в доме 7 этажей. Тогда в одном подъезде 3*7 = 21 квартира. Квартира номер 42 - последняя во 2 подъезде. Квартир с номерами больше 42 во 2 подъезде нет. Значит, в доме 11 этажей. Тогда в одном подъезде 3*11 = 33 квартиры. Квартира номер 42 - последняя на 3 этаже.
скорость велосипедиста y км/ч .
A .C B (C - место встречи).
AC =(50/60) *x =(5/6)*x ; BC= (50/60) *y =(5/6)*y .
AB =AC +BC= (5/6) *(x + y). Вычислить время t = (5/6) *(x + y)/ y→?
((5/6)*x)/y - ((5/6)*y)/x =4 ⇔x/y -y/x =24/5. * * * 5 -1/5 * * *
(после встречи меняются путями ) ; замена x/y =z .
z -1/z =24/5 ⇔5z² -24z - 5 = 0 ⇒ z₁ =(12-13)/5= - 1/5 не решения задачи .
z₂ =(12+13)/5= 5 ⇒ x/y =5 ⇒(x+y)/y =6 .
t = (5/6) *(x + y)/y = (5/6)*6 = 5 (ч) .
ответ : Велосипедист на путь из B в A затратил 5 часов .