Объяснение:
Разложить число на простые множители значит записать число как произведение простых чисел .
Простым числом называют натуральное число , делящееся только на себя и на единицу. Составным числом называют число, имеющее больше двух различных делителей Например, числа 2,3,5,7, – простые, а числа 6(2*3),8(2*4),9(3*3) – составные.
Число 388 , оканчивается на 8 значит делится на 2
388:2=194, оканчивается на четное , значит также делится на 2
194 :2= 97 ,вспомним признаки делимости на 3 и 9 , число делится если сумма его цифр делится на 3 или 9.На четыре делится если 2 его последние цифры нули или образуют число которое делится на 4, На пять делится если число оканчивается на 5 или 0.осталось число 6 и 8. На 6 делится если одновременно делится на 2 и 3 , и число делится на 8, если три его последние цифры - нули или образуют число, которое делится на 8.
97=9+7=16, ни на одно число не делится, кроме 1 и самого себя значит 97 это простое число.
388=2*2*97
Число 2520
2520:2= 1260 ( признак делимости на 2)
1260:2=630 ( признак делимости на 2)
630:2=315 ( признак делимости на 5)
315:5=63 ( признак делимости на 3 и 9; 6+3=9 делится и на 3 и на 9
63:3=21 (2+1=3, признак делимости на 3 )
21:3=7 ( неделимое, простое число)
2520 = 2*2*2*3*3*5*7
2) Чтобы обратить обыкновенную дробь в десятичную, нужно числитель разделить на знаменатель.
3 2/5=17/5=17:5=3,4 мы получили конечную десятичную дробь, поскольку в знаменателе обыкновенной дроби стоит 5 ( получить конечную десятичную дробь можно если знаменатель обыкновенной дроби содержит простые множители 2 и 5)
43/30=43:30=1,4 33333… = 1,4(3), поскольку знаменатель обыкновенной дроби содержит кроме 2 и 5 еще 3, то она не может быть представлена конечной десятичной дробью.
1) у' = 16x³ -15[² +4x
y' = (3(3x +1) - 3(3x -1))/(3x +1)² = (9x +3 -9x +3)/(3x +1)² = 6/(3x +1)²
y' = 1/2√(x⁵ -4x³ -4) *(x⁵ -4x³ -4)' = (5x⁴ -12x²)/2√(x⁵ -4x³ -4)
4) ∫3dx/Cos²(3x -1)= 3*1/3*tg(3x -1) + C = tg(3x -1) + C
5) S = ₀∫¹ x³dx = x⁴/4 |₀¹ = 1/4