Самое маленькое трехзначное число - это 100. Если полагать, что меньшее из искомых чисел равно 100, то большее = 100*5 = 500 а сумма 500 + 100 = 600. По условию сумма 498, но это меньше, чем 600, чего не может быть. Значит среди трехзначных чисел задача не имеет решений. Пусть х - одно из чисел, тогда 498 - х - второе число, рассотрим два случая: 1. Если х - большее из чисел и тогда имеем уравнение х/(498 - х) = 5; 2. Если х - меньшее число, тогда (498 - х) /х = 5. Решая первое уравнение, получаем х = 2490 - 5х 6х = 2490 х = 415 498 - х = 83. Из второго уравнения находим 498 - х = 5х 6х = 498 х = 83 498 - х = 415. Оба случая привели к одному ответу. ответ: 83 и 415.
Сумма n членов посл-ти в числителе: Sn=[(n+1)^2]*[n/2]-2n-4n+4-6n+12-8n+24+...-n^2+const+...-4n+4-2n= (1) =(n^3)/2+n^2+n/2-2n(1+2+3+4+...+n/2)+A(n^2) (2) <<<Пояснение: представили сумму посл-ти числ-ля как n/2 квадратов сумм пар крайних членов т.е. [(n+1)^2+(n-1+2)^2+(n-2+3)^2+...+([n-n/2]+n/2)^2] и прибавили разницу т.е. напр. для номера 3: (3^2+(n-2)^2)-(3+n-2)^2=-6n+12; для номера 2: -4n+4 и т.д. Таким образом получили (1) Далее (2): А(n^2)-величина порядка не более n^2, получаемая при сложении всех свободных членов из (1)>>> (n^3)/2+n^2+n/2-2n(1+2+3+4+...+n/2)+A(n^2)=(n^3)/2+n^2+n/2-2n([n/2+1]/2*(n/2))+A(n^2)=(n^3)/4+A(n^2)+A(n)+const Отсюда искомый предел: lim[(n^3)/4+A(n^2)+A(n)+const]/[n^3+3n^2+2] при n->& равен 1/4
Если полагать, что меньшее из искомых чисел равно 100,
то большее = 100*5 = 500
а сумма 500 + 100 = 600.
По условию сумма 498, но это меньше, чем 600, чего не может быть.
Значит среди трехзначных чисел задача не имеет решений.
Пусть х - одно из чисел,
тогда 498 - х - второе число,
рассотрим два случая:
1. Если х - большее из чисел и тогда имеем уравнение
х/(498 - х) = 5;
2. Если х - меньшее число, тогда
(498 - х) /х = 5.
Решая первое уравнение, получаем
х = 2490 - 5х
6х = 2490
х = 415
498 - х = 83.
Из второго уравнения находим
498 - х = 5х
6х = 498
х = 83
498 - х = 415.
Оба случая привели к одному ответу.
ответ: 83 и 415.