Чтобы упростить выражение (а + 5)(а - 2) + (а - 4)(а + 6) вспомним как умножить скобку на скобку.
Правило умножения скобки на скобку звучит так: чтобы умножить одну сумму на другую, надо каждое слагаемое первой суммы умножить на каждое слагаемое второй суммы и сложить полученные произведения.
(а + 5)(а - 2) + (а - 4)(а + 6) = a * a - 2 * a + 5 * a - 2 * 5 + a * a + 6 * a - 4 * a - 4 * 6 = a^2 - 2a + 5a - 10 + a^2 + 6a - 4a - 24.
Сгруппируем и приведем подобные слагаемые:
a^2 + a^2 - 2a + 5a + 6a - 4a - 10 - 24 = 2a^2 + 5a - 34.
ответ: 2a^2 + 5a - 34.
Объяснение:
Данный многочлен можно разложить на множители группировки. Сгруппируем 1 и 2, 3 и 4 множители и выпишем их в отдельных скобках:
(bm+3b)+(2cm+6c). Теперь, из каждой скобки вынесем общий множитель. В 1 скобке это b, а во 2 - 2с. Вынесем данные множители и получим:
b(m+3)+2c(m+3). Теперь общее выражение m+3 вынесем в скобках отдельно, а остальное запишем в других скобках:
(m+3)(b+2c). Это наше разложение, оно является ответом.
Оформление в тетради должно выглядеть так:
bm+3b+2cm+6c=b(m+3)+2c(m+3)=(m+3)(b+2c).
Убывает на (-∞;1). Область значений: [-8;+∞)
Объяснение:
Найдём координаты вершины параболы: x=-b/2a = 4/4 = 1. Так как это парабола с ветвями вверх, то функция убывает на (-∞;1). В своём наименьшем значении (в вершине) функция принимает значение -8. Следовательно, область значений: [-8;+∞)