М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
angel3530
angel3530
24.01.2022 17:10 •  Алгебра

Сума двох чисел дорівнює 80 а їх різниця дорівнює 15. знайти ці числа ​

👇
Ответ:
Лизза111
Лизза111
24.01.2022
Объяснение:

Нехай x - перше число, тоді y - друге число. Оскільки їх сума дорівнює 80, то складаємо рівняння : x + y = 80

За другою умовою задачі маємо рівняння : x - y = 15

ответ:

|x + y = 80 |x = 42,5

| |

|x - y = 15 |x + y = 15

2x = 95 |x = 42,5

|

x = 42,5 |y = 80 - 42,5

|x = 42,5

|y = 37,5

Відповідь: перше число - 42,5 ; друге число - 37,5.

4,6(11 оценок)
Открыть все ответы
Ответ:
AlionaNigrevskaya
AlionaNigrevskaya
24.01.2022

1. Количество трехзначных чисел, составленных из трех различных цифр из множества цифр 1, 2, 3, 4, 5, 6 и 7, равно количеству размещений без повторения 7 элементов по 3 позициям:

     A(7, 3) = 7!/(7 - 3)! = 7!/4! = 7 * 6 * 5 = 210.

  2. В общей формуле A(n, m) = n!/(n - m)!, отношение факториалов называется убывающим факториалом. В частном случае, при n = m получим число перестановок n элементов:

     A(n, n) = n!/(n - n)! = n!/0! = n!

  3. Аналогичный результат получим для размещений n элементов по (n - 1) позициям:

     A(n, n - 1) = n!/(n - n + 1)! = n!/1! = n!

  ответ. Количество трехзначных чисел: 210

Объяснение:

4,7(47 оценок)
Ответ:
dhcf12
dhcf12
24.01.2022

1. Количество трехзначных чисел, составленных из трех различных цифр из множества цифр 1, 2, 3, 4, 5, 6 и 7, равно количеству размещений без повторения 7 элементов по 3 позициям:

     A(7, 3) = 7!/(7 - 3)! = 7!/4! = 7 * 6 * 5 = 210.

  2. В общей формуле A(n, m) = n!/(n - m)!, отношение факториалов называется убывающим факториалом. В частном случае, при n = m получим число перестановок n элементов:

     A(n, n) = n!/(n - n)! = n!/0! = n!

  3. Аналогичный результат получим для размещений n элементов по (n - 1) позициям:

     A(n, n - 1) = n!/(n - n + 1)! = n!/1! = n!

  ответ. Количество трехзначных чисел: 210

Объяснение:

4,6(64 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ