Решение системы уравнений (2; 1)
Объяснение:
Решить методом сложения систему уравнений :
{2х+3у=7
{7х-3у=11
Смысл метода алгебраического сложения в том, чтобы при сложении уравнений одно неизвестное взаимно уничтожилось. То есть, чтобы коэффициенты при неизвестном каком-то были одинаковыми, но с противоположными знаками. Для того, чтобы этого добиться, преобразовывают уравнения, можно умножать обе части уравнения на одно и то же число, делить.
В данной системе ничего преобразовывать не нужно, коэффициенты при у одного значения и с противоположными знаками.
Складываем уравнения:
2х+7х+3у-3у=7+11
9х=18
х=2
Теперь подставляем значение х в любое из двух уравнений системы и вычисляем у:
2х+3у=7
3у=7-2х
3у=7-2*2
3у=7-4
3у=3
у=1
Решение системы уравнений (2; 1)
производительность первого станка Х,тогда 120 дет. штампуют за время t1=120/x
производительность первого станка Y,тогда 120 дет. штампуют за время t2=120/y
по условию
t2 - t1 = 1 ч
120/y - 120/x = 1
1/y -1/x =1/120 (1)
а также На двух станках штамповали 1300 деталей за 13 ч.
13 * (x+y) = 1300
x+y = 100 ; y = 100 -x (2)
решим систему уравнений (1)(2)
1/(100-x) -1/x =1/120
120 (x - (100-x)) = x(100-x)
x^2 +140x - 12000 =0
D = 140^2 - 4*1*(-12000) =67600
√D = -/+ 260
x1 = 1/2 (-140 -260) = -200 отрицательное значение не подходит
x2 = 1/2 (-140 +260) = 60
ответ
на первом станке штампуют 60 дет/час