1. нет; 2. 1) общего вида 2) общего вида 3) общего вида 3. 1) -1; 3 2) 1; -3 4) -1
Объяснение:
1. Если функция нечетная то произведение f(3)f(-3) не будет положительным.
2.
1)
Это функция общего вида
2)
Это функция общего вида
3)
Это функция общего вида
3.
1)
Значит
2)
Значит
4.
Это биквадратное уравнение. Делаем подстановку
Уравнение будет иметь один корень, когда дискриминант равен 0
Но, поскольку х=±√у, то при любом положительном у мы получим два различных значения х. Одно значение х мы получим лишь в случае у=0. Тогда х=√0=0. Следовательно
Делаем проверку:
1) а=-1
Имеется одно решение (т.к выражение в скобках никогда не будет равно 0)
2) а=3
Здесь появляется второй корень. Значит, это значение не подходит.
Окончательно получаем решение: а=-1
х - 2у = 4
у = (х - 4) : 2
у = х - 2.
Теперь ниже составляешь таблицу, где в названиях строк указываешь "х" и "у" и показываешь зависимость х от у: вписав в строку "х" несколько (2-3, не больше) значений (желательно брать одно отрицательное и одно положительное, а также нуль) по выведенной ранее формуле находишь у. Выглядеть это будет примерно так:
х 2 -2 0
у -1 -3 -2
Теперь находишь на координатной плоскости точки с заданными координатами: по оси абсцисс лежит х, по оси ординат - найденный у. Соединив полученные точки, и получишь график этой функции. Примечание: это должен быть не отрезок, а именно прямая, т.е. проходить она должна по всей координатной плоскости.