Х яблок у Володи ух яблок у Пети у²х яблок у Коли После раздачи стало: х+4 яблок у Володи ух-2 яблок у Пети у²х-2 яблок у Коли Эти числа и составляют арифметическую прогрессию: 1) если (ух-2) среднее число в арифметической прогрессии х+4+у²х-2=2(ух-2) (сумма наибольшего и наименьшего равна удвоенному среднему) у²х-2ух+х=-6 х(у²-2у+1)=-6, что невозможно 2) если (у²х-2) среднее число в арифметической прогрессии х+4+ух-2=2(у²х-2) 2у²х-ух-х=6 х(2у²-у-1)=6 2у²-у-1=6, но в этом случае нет целых корней 3) если (х+4) – среднее число в арифметической прогрессии ух-2+у²х-2=2(х+4) у²х+ух-2х=12 х(у²+у-2)=12 Т.к. у≥2, то у²+у-2≥4 (и является делителем числа 12) Пусть у=2, тогда х=3, а значит число яблок 3, 6 и 12 Либо у²+у-2=6 или у²+у-2=12, но в этом случае нет целых корней Следовательно у Володи 3 яблока, у Пети – 6 яблок, у Коли – 12 яблок. Всего 3+6+12=21 яблоко ответ: 21
1) f(x) =x⁴ + 4·sin²x·cos²x - чётная функция
2) f(x) =x⁴ + 4·sin²x·cos²x - нечётная функция
Объяснение:
Определение. Функция f(x), x∈X, называется чётной, если для любого значения x из множества X выполняется равенство: f(–x) = f(x).
Определение. Функция f(x), x∈X, называется нечётной, если для любого значения x из множества X выполняется равенство: f(–x) =–f(x).
Известно, что функция:
sinx – нечётная, cosx - чётная, tgx – нечётная, ctgx – нечётная.
Решение.
1) Функция f(x) =x⁴ + 4·sin²x·cos²x определена при всех x∈R. Проверим по определению при x∈R:
f(–x) = (–x)⁴ +4·sin²(–x)·cos²(–x) = x⁴ +4·(–sinx)²·cos²x =
= x⁴ +4·sin²x·cos²x = f(x), то есть f(–x) = f(x) и функция – чётная;
2) Функция f(x) = (tgx – ctgx)/cosx определена при всех x∈X=R\{πn, π/2+πk, n∈Z, k∈Z}. Проверим по определению при x∈X:
f(–x) = (tg(–x) – ctg(–x))/cos(–x) = (–tgx –(–ctgx))/cosx =
= –(tgx – ctgx)/cosx = –f(x), то есть f(–x) = –f(x) и функция – нечётная.