М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Maksim77769
Maksim77769
01.01.2021 11:02 •  Алгебра

(4-х)(3х-1)(х+8)меньше или равно ПОМГИТЕ НУЖНО ​

👇
Ответ:
modar55
modar55
01.01.2021

....................


(4-х)(3х-1)(х+8)меньше или равно ПОМГИТЕ НУЖНО ​
4,4(38 оценок)
Открыть все ответы
Ответ:
sherbashina
sherbashina
01.01.2021
Y = x -Lnx
Облость определения :  x ∈ (0;∞)
y ' = (x -Lnx) ' = (x) ' - (Lnx) ' =1 - 1/x =(x - 1)/x
Критические точки :
y ' = 0  ;
 (x - 1)/x =0 ;
x = 1 ;  Эта единстветннуая  критическая точка для  данной функции
Промежутки  монотонности:
функция убывает ,если  y ' ≤ 0  ;
(x - 1)/x ≤ 0  т.е. при
  x ∈ (0;1]
 функция возрастает, если  y ' ≥ 0 ;
(x - 1)/x ≥ 0  т.е. при  x ∈ [1; ∞ )
Единстветнная  точка  экстремума :  x=1
 В  этой  точке(точка экстремума) функция  принимает минимальное
значение   min(y) =  1 - Ln1=1 - 0 =1
4,7(93 оценок)
Ответ:
Новичок1532
Новичок1532
01.01.2021
Как я понял, b-6,5 - это основание логарифмов?
1) Область определения логарифма:
Основание логарифма > 0 и не равно 1
b - 6,5 > 0; b > 6,5
b - 6,5 =/= 1; b =/= 7,5
Число под логарифмом > 0:
x^2 + 1 > 0 - это верно при любом х
(b-5)*x > 0. Так как уже известно, что b > 5, то x > 0

2) Решаем уравнение. Основания логарифмов одинаковые, убираем их
x^2 + 1 = (b-5)*x
x^2 - (b-5)*x + 1 = 0
Так как уравнение должно иметь 2 различных корня, то D > 0
D = (b-5)^2 - 4*1*1 = b^2 - 10b + 25 - 4 = b^2 - 10b + 21 > 0
(b - 3)(b - 7) > 0
b < 3 U b > 7
Но из обл. опр. мы знаем, что
b > 6,5
b =/= 7,5
b принадлежит (7; 7,5) U (7,5; +oo)

3) Найдем x
x^2 - (b-5)*x + 1 = 0
x1 = (b - 5 - √(b^2 - 10b + 21) ) / 2
x2 = (b - 5 + √(b^2 - 10b + 21) ) / 2
Из обл. опр. мы выяснили, что х должен быть > 0.
Ясно, что x2 > x1, поэтому достаточно проверить
(b - 5 - √(b^2 - 10b + 21) ) / 2 > 0
b - 5 - √(b^2 - 10b + 21) > 0 
√(b^2 - 10b + 21) < b - 5
b^2 - 10b + 21 < b^2 - 10b + 25
Это верно при любом b, но проверить было необходимо.
ответ:  b принадлежит (7; 7,5) U (7,5; +oo)
4,6(40 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ