Если левая и правая части уравнения являются рациональными выражениями, то такие уравнения называют рациональными.
Рациональные уравнения, в которых и левая и правая части являются целыми выражениями, называются целыми. После упрощения целого уравнения его левая часть представляет собой многочлен.
Например, 2х + 5 = 3(8 - х) - целое, х - 5/х = -3х + 19 - не является целым, оно является дробным.
Степень целого уравнения - это степень многочлена.
Степень многочлена - это степень старшего члена многочлена.
Например, у многочлена х + 5 - степень 1-я, х² + 3х -2 - степень 2-я,
х + 4х² - х³ - 3-я степень.
По теореме Пифагора:
Составим и решим систему уравнений
Из второго уравнения имеем, что
Случай 1. Если
Согласно теореме виета
Случай 2. Если
Согласно теореме Виета
Катеты прямоугольного треугольника равны 35 см и 12 см или 12 см и 35 см.
Периметр прямоугольного треугольника:
ответ: 84 см.