Кол-во чисел от 1 до N, делящихся на x, равно [N/x].
Тогда, по формуле включения исключений, кол-во вычеркнутых чисел равно [N/3]+[N/4]-[N/12]
N=2017+[N/3]+[N/4]-[N/12]
N=2017+N/3-{N/3}+N/4-{N/4}-N/12+{N/12}
N/2=2017+{N/12}-{N/3}-{N/4}
{x}∈[0;1)=>{N/12}-{N/3}-{N/4}∈(-2;1)
-2<N/2-2017<1
2015<N/2<2018
4030<N<4036
N=4031: [N/3]+[N/4]-[N/12]=1343+1007-335=2015
N=4032: [N/3]+[N/4]-[N/12]=1344+1008-336=2016
N=4033: [N/3]+[N/4]-[N/12]=1344+1008-336=2016=N-2017 - верно
N=4034: [N/3]+[N/4]-[N/12]=1344+1008-336=2016
N=4035: [N/3]+[N/4]-[N/12]=1345+1008-336=2017
ответ: 4033
{x} - дробная часть числа x
[x] - целая часть числа x
Пусть сторона квадрата х см, тогда длина прямоугольника (3х) см, а ширина прямоугольника - (х - 5) см.
Т.к. площадь квадрата находят по формуле S = а², где а - сторона квадрата, о площадь данного квадрата равна (х²) см².
А т.к площадь прямоугольника находят по формуле S = a · b, где a и b - длина и ширина прямоугольника, то площадь данного прямоугольника будет равна S = 3х · (х - 5) = 3х² - 15х (см²).
Т.к. площадь квадрата на 50 см² меньше площади прямоугольника, то составим и решим уравнение:
3x² - 15х = x² + 50,
3x² - x² - 15x - 50 = 0,
2x² - 15x - 50 = 0,
D = (-15)² - 4 · 2 · (-50) = 225 + 400 = 625 ; √625 = 25,
x₁ = (15 + 25)/(2 · 2) = 40/4 = 10,
x₂ = (15 - 25)/(2 · 2) = -10·/4 = -2,5 - не подходит по условию задачи.
Значит, сторона квадрата равна 10 см.
ответ: 10 см.
cosx=a
6a²+5a-4=0
D=25+96=121
a1=(-5-11)/12=-4/3⇒cosx=-4/3 нет решения
a2=(-5+11)/12=1/2⇒cosx=1/2⇒x=+_π/3+2πn
sinx=0⇒x=πn
x={-5π/3;-π}∈(-2π;-π/2)