Запишем данные в таблицу, по строке выразим время движения каждого велосипедиста (расстояние разделить на скорость).
Время движения первого велосипедиста:
ч
Время движения второго велосипедиста:
ч
Известно, что первый велосипедист прибывает к финишу на 2 ч раньше второго, т.е. время движения у него меньше. Вычитаем из большего времени меньшее и получаем уравнение:
x > 0 по смыслу задачи, поэтому умножаем на знаменатель обе части уравнения.
Пусть х км/ч - скорость пешехода, тогда (х-2) км/ч - скорость туриста Пусть у ч - время туриста, тогда (у - 0,5) ч - время пешехода. По условию ясно, что пешеход км, а турист соответственно км. Составим уравнения: 12/(х-2) - это время туриста, 15/х - это время пешехода. Составим систему уравнений: у = 12/(х-2) у-0,5 = 15/х Подставим первое во второе, получим: 12/(х-2) - 0,5 = 15/х Перенесем: 12/(х-2) - 15/х = 0,5 под общий знаменатель: (12х - 15х + 30) / х (х-2) = 0,5 30 - 3х = 0,5х (2) - х х (2) - это х в квадрате -3х - 0,5х (2) + х + 30 = 0 -0,5х (2) - 2х + 30 = 0 0,5х (2) + 2х - 30 = 0 х (2) + 4х - 60 = 0 Д = 16 + 4*60 = 256 корень из Д = 16 х первый = (-4 + 16) / 2 = 6 км/ч х второй = (-4-16)/2 = -10 - не подходит, т. к. отрицательный Значит скорость пешехода х = 6
6 км/ч
Объяснение:
Пусть х км/ч - скорость второго велосипедиста,
(х + 4) км/ч - скорость первого.
Оба велосипедиста проехали по 30 км.
Запишем данные в таблицу, по строке выразим время движения каждого велосипедиста (расстояние разделить на скорость).
Время движения первого велосипедиста:
Время движения второго велосипедиста:
Известно, что первый велосипедист прибывает к финишу на 2 ч раньше второго, т.е. время движения у него меньше. Вычитаем из большего времени меньшее и получаем уравнение:
x > 0 по смыслу задачи, поэтому умножаем на знаменатель обе части уравнения.
По теореме, обратной теореме Виета,