y=6x⁵+15x⁴+10x³
1) Область определения: х∈(-∞,+∞) .
2) Множество значений: у∈(-∞,+∞) .
3) Эта кривая не имеет асимптот, так как
.
Нет точек разрыва.
4) Точка пересечения с осью ОУ (при х=0) одна - это (0,0).
5) Точка пересечения с осью ОХ тоже одна - (0,0), так как
6) Интервалы монотонности и точки экстремума функции:
Подсчитаем знаки производной y' на полученных интервалах:
При переходе через точки х=0 и х= -1 производная не меняет знак, значит точки х=0 и х= -1 не являются точками экстремума. А на промежутках, где производная всюду положительна, сама функция возрастает.
Интервалы возрастания функции: x∈(-∞,-1 ]∪[-1,0 ]∪[0,+∞) .
7) Интервалы выпуклости и вогнутости, точки перегиба функции:
Определим знаки второй производной y'' на интервалах:
На промежутках, где y''<0, функция y(x) выпукла, а там, где y''>0, функция вогнута. Точки перегиба - те точки, при переходе через которые у'' меняет знак,это х= -1 , х= -0,5 , х=0 .
8) Для более точного построения графика найдём координаты некоторых промежуточных точек: (-1,-1) , (-0,5 ; -0,5) .
График на рисунке.
это не пример, а система уравнений)
х-4у=10
(х-1)²=7(х+у)+1
упростим второе уравнение.
в левой части дана формула сокращенного умножения, разложим ее. чтобы раскрыть скобки из правой части, нужно член, стоящий перед скобкой, умножить на каждый член в скобках. получим:
х-4у=10
х²-2х+1=7х+7у+1
во втором уравнении перенесем все в левую часть, поменяв знак, если переносим выражение через равно. приведем подобные и получим:
х-4у=10
х²-9х-7у=0
решим систему методом подстановки.
выразим х в первом уравнении:
х=10+4у
х²-9х-7у=0
теперь вместо х подставляешь выражение 10+4у во второе уравнение.
х=10+4у
(10+4у)²-9(10+4у)-7у=0
поработаем со 2 уравнением. раскроем скобки:
100+80у²+16у-90-36у-7у=0
80у²-27у+10=0
D= 729-3 200
дискриминант выходит отрицательный, значит корней нет
я так думаю...