x∈[-4 ; 4]
Объяснение:
Решим каждое неравенство в отдельности:
1)
Приравняем к 0, чтобы найти корни уравнения:
Это обычное квадратное уравнение, значит, сначала найдем дискриминант:
D < 0, а значит, вещественных корней нет.
Значит, неравенство выполняется ВСЕГДА или НИКОГДА. Проверим, подставив любое число в уравнение. Например, x = 10:
Получили значение больше 0, значит, неравенство выполняется ВСЕГДА при ЛЮБЫХ значениях x
x ∈ (-∞ ; +∞)
2)
Приравняем к 0 и найдем корни:
Получили 2 корня. Наносим их на координатную ось, ставим 2 точки: -4 и 4. Далее расставляем знаки функции на участках (путем подстановки любого числа из этого участка: до -4 возьмем -10, подставим в уравнение и получим положительное число → +; между -4 и 4 возьмем 0, подставим, получим отрицательное число → –; от 4 и далее возьмем 10 и получим положительное число → +). Нам нужен тот участок, в котором функция принимает ОТРИЦАТЕЛЬНОЕ значение, т.е. там где стоит минус.
Значит ответ: x∈[-4 ; 4]
Скобки квадратные, т.е. неравенство строгое (есть знак равно).
Получается \frac{2x}{y^{4}} и \frac{3x^{3}}{y^{4}}.
2) Дополнительный множитель к первой дроби будет y, а ко второй a^{5}. Получается \frac{2by}{ya^{5}} и \frac{6a^{5}}{ya^{5}}.
3) Новый общий знаменатель для двух дробей будет это 6x^{2}y^{2}.
Тогда дополнительный множитель к первой дроби будет 2x, а ко второй y. Получается \frac{7y}{6x^{2}y^{2}} и \frac{4x}{6x^{2}y^{2}}.
4) Новым общим знаменателем для двух дробей будет 7x(x+5). Тогда дополнительным множителем к первой дроби будет 7x, а ко второй (x+5). Получается \frac{28x}{7x(x+5)} и \frac{3x+15}{7x(x+5)}.
5) Т.к. новый общий знаменатель должен включать в себя все множители из обоих дробей, то он будет равен (3x-3y)(4x+4y). Из каждой скобки можно вынести общий множитель, перемножить их, а скобки свернуть по формуле "разность квадратов":
(3x-3y)(4x+4y)=3(x-y)4(x+y)=12(x^{2}-y^{2}). ответ и будет являться новым общим знаменателем.
Дополнительный множитель к первой дроби будет (3x-3y), а ко второй (4x+4y). Получается \frac{8x^{2}+8xy}{12(x^{2}-y^{2})} и \frac{9xy-9y^{2}}{12(x^{2}-y^{2})}.
6) Из знаменателя первой дроби вынесем общий множитель:
2a+2=2(a+1). Таким образом новый общий знаменатель будет равен 2(a+1). Дополнительный множитель к первой дроби будет 1, а ко второй 2. Получается \frac{a}{2(a+1)} и \frac{6}{2(a+1)}.