График - парабола ( здесь так же указывается направление ветвей параболы. Если переменная a>0 - ветви вверх, если a<0 - ветви вниз. В нашем случае ветви у параболы направлены вверх 1>0 )
D (y): x - любое ( какая бы парабола не была - эта строка неизменна)
Задача на производительность Пусть х производительность первого рабочего, а у-второго рабочего Поскольку после 3 часов работы первого рабочего был сделан объем работ 3х, второй сделал (3-1)*у =2у. Всего было сделано 1-0,45 =0,55 объема работ Или запишем первое уравнение 3x+2y =0,55 Выразим из уравнения y y = (0,55-3x)/2 По окончанию работы кажды сделал ровно половину объема работ Время потраченное первым рабочим составило 1/(2x) Время потраченное вторым рабочим составило 1/(2y) Так как второй потратил на 1 час меньше запишем второе уравнение 1/(2x) - 1/(2y) =1 Поскольку х и у одновременно не равняются нулю то умножим обе части уравнения на 4х*у 2у-2х=4ху Подставим выражение для у полученное выше у=(0,55-3х)/2 0,55-3x-2x =2x(0,55-3x) 0,55-5x =1,1x-6x^2 6x^2-6,1x+0,55 =0 D =6,1^2-4*6*0,55 = 24,01 x1=(6,1-4,9)/12 = 0,1 x2=(6,1+4,9)/12=11/12 Найдем у y1 =(0,55-3*0,1)/2=0,25/2=0,125 y2=(0,55-3*(11/12))/2=(0,55-11/4)/2 =-1,1 ( Производительность не может быть отрицательной) Поэтому х2=11/12 также не удолетворяет решению Найдем время потраченное каждым рабочим на выполнение работы t1 =1/x1=1/0,1 =10 часов t2=1/y1 =1/0,125 =8 часов
1) y = x2 + 2x - 3
График - парабола ( здесь так же указывается направление ветвей параболы. Если переменная a>0 - ветви вверх, если a<0 - ветви вниз. В нашем случае ветви у параболы направлены вверх 1>0 )
D (y): x - любое ( какая бы парабола не была - эта строка неизменна)
Вершина: ( -1; -4 ), т.к.
m ( x ) = -2:2 = -1
n ( y ) = (-1)2 +2(-1) - 3 = -4.
с осью OY: ( 0; -3 ), т.к.
y = 0x2 + 0*2 - 3
y = -3
с осью OX: ( -3; 0 ) и ( 1; 0 ), т.к.
x2 + 2x - 3 = 0
D = 4 - 4*1(-3) = 4 + 12 = 16
x1 = ( -2 - 4 ):2 = -3
x2 = ( -2 + 4 ):2 = 1.
Построим ещё две точки:
x = 2 y = 5
x = -2 y = -3.