1.
1)
38² - 64 = 38² - 8² = (38 - 8)(38 +8) = 30 * 46 = 1380,
2.
1)
2в² - 18 = 2 * (в² - 9) = 2 * (в - 3)(в + 3),
3)
81х² - 18ху + у² + 63х - 7у = (81х² - 18ху + у²) + (63х - 7у) =
= (9х - у)² + 7*(9х - у) = (9х - у)(9х - у + 7),
4)
m² + n² + 2mn = (m + n)².
3.
а)
(8 - 2n)(8 + 2n) + (9 + 2n)² - 64 = 64 - 4n² + 81 + 36n + 4n² - 64 =
= 36n + 81 = 9(4n + 9),
б)
(3х - 8)² + (4х - 8)(4х + 8) = 9х² - 48х + 64 + 16х² - 64 = 25х² - 48х,
при х=-2:
25 * (-2)² - 48 * (-2) = 100 + 96 = 196,
4.
1 число - х,
2 число - (х+2),
(х+2)² - х² = 188,
х² + 4х + 4 - х² = 188,
4х = 184,
х = 46 - 1 число,
х+2 = 46+2 = 48 - 2 число
Объяснение:
Число n либо делится на 3, либо дает остатки 1, 2(равносильно остатку -1) при делении на 3. Если n делится на 3, то все одночлены кроме 82 делится на 3, то есть многочлен не делится на 3. Предположим что n имеет остатки +-1. n=3k+-1. Любоe выражении вида: n^r=(3k+-1)^r ,где r -натуральное число ,дает остаток (+-1)^r при дилении на 3. Тк все члены в биноме (3k+-1)^r кроме последнего помножены на какую либо степень числа 3. Это очень простое правило, которое почему то понимают единицы. Найдем остаток от деления на 3 нашего многочлена, когда: n=3k+-1.(остаток от деления 82 на 3 равен 1)
(+-1)^3+3*(+-1)^2 +8*(+-1) +1= 13 или -5 ,то есть сумма остатков не кратна 3,а значит и общий остаток от деления на 3 не равен, то есть выражение не делится на 3. ЧТД.