Вниз по реке-это значит, что течение плыть катеру, т.е. полная скорость катера за в это путешествие составляло х+21 км/ч, где х-скорость течения реки. Получается обратно скорость катера была меньше, т.к. течение уже мешало плыть катеру, т.е. обратно скорость катера составляла: 21-х км/ч. Пусть у - это время всего путешествия катера - туда и обратно. Составим уравнение относительно скорости реки "х" и решим его: Путешествие катера из города А в город В: (х+21)m=72 (x-21)n=72 m+n=y Здесь: m-время пути катера из города А в город В, а n-время пути катера обратно, тогда: m=y-n
(х+21)(y-n)=72 (x-21)n=72
Время пути канистры: х*у=21
Получаем систему уравнений:
(х+21)(y-n)=72 (x-21)n=72 х*у=21
x*y-x*n+21*y-21*n=72 x*n-21*n=72 х*у=21
21-x*n+21*y-21*n=72 x*n-21*n=72 х*у=21
21-x*n+21*y-21*n=72 n(x-21)=72 х*у=21
21-21n+72-21n+21y=72 n(21/y - 21)=72
-42n+21y=-21 :21 n=72/(21/y - 21)
-2n+y=-1 n=72/(21/y - 21)
y=2n-1 n*(21/(2n-1) - 21)=72 n*(21-42n+21)=72(2n-1) -42n²+42n-144n+72=0 -42n²-102n+72=0 -21n²-51n+36=2601+12096=5625 √5625=75 n1=(51+75)/-42=-3 <0 - ответом быть не может (скорость не может быть отрицательной) n2=(51-75)/-42=24/42=12/21
тогда сторона 1-го квадрата = х+3.
S 2 (площадь 2-го квадрата) = х3
S 1 (площадь 1-го квадрата) = (х+3) в кв.
S1=(х+3)^2.
х^2 +6х + 9
Данное значение приривниваем к 0 и ищем по дискриминанту
х^2 + 6х + 9 = 0
а=1 в=6 с=6
Д=6^2 - 4×1×9 = 36 - 36 = 0
х=-3 но так как сторона квадрата не может быть равна -3, то минус просто отбпасываем.
Выходит, что сторона 2-го квадрата = 3, ТОГДА СТОРОНА 1-ГО КВАДРАТА = 3+3=6
Периметр (далее - Р) - это сумма всех сторон квадрата.
Значит Р 1-го квадрата = 6+6+6+6=24
Р 2-го квадрата= 3+3+3+3=12
Можно выполнить проверку при желании. S2= х^2 = 3^2 = 6
24-12=12 S1 больше S2