Нужно просто запомнить эти формулы. Например, нам дан многочлен x^2+8x+16 . Можно заметить, что это формула квадрата суммы: (a+b)^2=(a^2+2ab+b^2)
Там дана правая часть этой формулы, значит мы можем ее «закрыть» (разложить на множители).
Сначала нам нужно определить первое слагаемое. Какое число в квадрате дает x^2? Просто х. Теперь определяем второе слагаемое какое число в квадрате даёт 16? Это 4. Теперь подставляем х и 4 в формулу. Получаем (х+4)^2. И подобным образом используются все формулы сокращённого умножения.
Чтобы научиться видеть среди записанных многочленов формулы нужно просто много тренироваться и учиться анализировать выражения.
Удачи в изучении!
P.S. ^ - знак возведения в степень.
5,5, √30, 3√3
Объяснение:
1. Судя по всему что больше?
а)Взведем в квадрат 32.49>31 значит 5,7 >√31
б) тут 4,2 >0, -√17 <0 значит 4.2>-√17
но -√17 может быть и положительным, тогда так же возведем в квадрат 17,64 > 17 тот же рез-т
2: два слагаемых. одно рациональное, второе иррациональное - т. к. корень из 3 и из 7 десятичная непериодическая бесконечная дробь (не может быть представлено в виде обыкновенной дроби)
Сумма рационального и иррационального - иррациональное.
Доказывается так: сумма (разность) двух рациональных - рациональное, если в данном случае сумма (разность) будет рациональным, то оба числа в условии рациональные, а это не так, см. выше.
3. смотрим ближайшие целые квадраты: 16 и 25, т. е. между 4 и 5
4. Возведем все в квадрат и избавимся от иррациональности: 30, 27 30,25
Значит 5,5, √30, 3√3