Приведи выражение в нормальный вид функции, т.е. у перенеси в левую часть, а х в правую. Получишь у=х-5 и у= -(х+1)/2. далее строй графики. У тебя графики прямых, поэтому достаточно найти две точки для каждого. Для первого можно взять точки при х=0 и при х= 5), тогда имеешь А(0, -5), В (5,0). Прямая пересекает оси координат в точках: ось Y в точке -5, а ось X в точке 5. Прямая располагается в третьей и первой четвертях, частично проходя через вторую четверть. Аналогично строишь график прямой для второй функции. Также достаточно двух точек, например для х=0 и х=-1. Тогда имеешь точки С(0, -1/2) и Д (-1, 0). Прямая пересекает оси координат в точках: ось Y в точке -1/2, а ось X в точке -1. Прямая располагается во второй и четвертой четвертях, частично проходя через третью четверть.
Далее находишь графическое решение, т.е. координаты точки пересечения этих прямых.
2 - 2x >= 5x - 3 - 2
-7x>=-7
x<=1
2) 7x+3>5(x-4)+1
7x + 3 > 5x - 20 + 1
2x > -22
x>-11
3) x^2-9>0
x^2 > 9
x>3
or
x<-3
4) x^2-11x+30<=0
D = 121 - 120 = 1
x1 = (11+1)/2 = 6 => x <= 6
x2 = (11-1)/2= 5 => x>=5 => 5<=x<=6
5) -2x^2+5x-2<0
D = 25 - 16 =9
x1 = (-5+3)/(-4) = 0,5 => x<0,5
x2 = (-5-3)/(-4) = 2 => x>2
6) (2x+3)(x-1)<0
{+} {+}
oo>x
-1,5 {-} 1
-1,5<x<1
7) x(4-x)(x+1)>=0
{+} {+}
|||>x
-1 {-} 0 4 {-}
x<=-1 and 0 <= x <=4
8) (2x-4)/(-x+5)>=0
{+} {+}
o|>x
-5 {-} 2
-5 < x <= 2