См. рисунок
1. Правильный шестиугольник, состоит из шести равносторонних треугольников.
Найдем сторону шестиугольника AB=r=48/6=8м.
Рассмотрим ΔСDO в нем CD=DO=0,5a (где а - сторона квадрата) ⇒ a=2CD
По теореме Пифагора найдем СD
r²=CD²+DO²=2CD² ⇒ r=CD√2⇒ м
м
2. Из задачи №1. мы убедились, что радиус описанной окружности равен стороне правильного шестиугольника.
Площадь правильного шестиугольника равна
⇒
см
Длина окружности равна L=2πr=2π4√3=π*8√3≈43,5 см
3. Площадь сектора равна
≈151 см²
(где n - градусная мера дуги сектора)
в I координатной четверти С(5,5; 5,5)
во II координатной четверти В(-5,5; 5,5)
в III координатной четверти Д(5,5; -5,5)
в IV координатной четверти А(-5,5; -5,5)
Объяснение:
по условию квадрат расположен так, что его стороны параллельны осям координат и делят каждую из его сторон пополам;
так как каждая из сторон равна 11, то от осей его вершины отстают на 11 : 2 = 5,5 ед отрезков. Получаем вершины квадрата, начиная с левой нижней:
А(-5,5; -5,5) в IV координатной четверти
В(-5,5; 5,5) во II координатной четверти
С(5,5; 5,5) в I координатной четверти
Д(5,5; -5,5) в III координатной четверти
х=-0,2 y=-2
Объяснение:
15x-6y=3
-15x+3y=-3
Я умножила первое уравнение на 3, а второе на -1
-3y=6
Y=-2
Я сложила все
15х+6=3
x= -0,2 я вставила y=-2 в уравнение