Обе части неравенства неотрицательны, можно возвести в квадрат. Сделаем это, по пути заметив, что нет разницы, что возводить в квадрат, число или его модуль:
Переносим квадраты в одну часть и раскладываем разность квадратов: (x^2 - x + 1)^2 - (x^2 - 3x + 4)^2 ≥ 0 ((x^2 - x + 1) - (x^2 - 3x + 4))((x^2 - x + 1) + (x^2 - 3x + 4)) ≥ 0 (x^2 - x + 1 - x^2 + 3x - 4)(x^2 - x + 1 + x^2 - 3x + 4) ≥ 0 (2x - 3)(2x^2 - 4x + 5) ≥ 0
Вторая скобка не имеет корней, так как дискриминант квадратного трехчлена отрицательный: D = 16 - 40 = -24. Поскольку перед x^2 стоит положительное число, вторая скобка принимает только положительные значения, на неё можно разделить.
Скалярное произведение находится так : (a,b)=x1*x2+y1*y2+z1*z2
Координаты вектора: ВА{xа-xb;ya-yb}
АВ{0 - 2;1-(-1)} Вектор : ВA{-2; 2}.
ВС{xc-xb;yc-yb}
АВ{4 - 2;1 -(-1)} Вектор : BC{2; 2}.
Находим скалярное произведение векторов :
BA + BC = 0(-2)*2 + 2*2 = -4 + 4 = 0
Значит, вектора ВА и ВС перпендикулярны.
Что и требовалось доказать