0<x<4/3
Объяснение:
числитель является положительным (это число 7, от x не завист)
надо найти значения x, при которых знаменатель положителен:
4 × x - 3 × x**2 > 0
4 × x - 3 × x**2 = x × (4 - 3×x)
рассмотрим 2 случая:
1. Оба положительные ( и x, и (4 - 3×x)): одновременно должно выполняться:
x > 0 и 4 - 3 × x > 0
x > 0 и -3×x > -4
x > 0 и x < 4/3
в этом случае решение существует. А именно,
0<x<4/3
2. Оба отрицательные: одновременно должно выполняться:
x < 0 и 4 - 3×x < 0
x < 0 и -3 × x < - 4
x< 0 и x> 4/3
в этом случае решения не существует.
Оставляем первый случай.
(x + 3)(4 - x) - 12 = 0
1) x = - 1
(- 1 + 3)[4 - (- 1)] - 12 = 0
2 * 5 - 12 = 0
10 - 12 ≠ 0
x = - 1 - не является корнем этого уравнения
2) x = 0
(0 + 3)(4 - 0) - 12 = 0
3 * 4 - 12 = 0
12 - 12 = 0 - верно
x = 0 - является корнем этого уравнения
3) x = 1
(1 + 3)(4 - 1) - 12 = 0
4 * 3 - 12 = 0
12 - 12 = 0 - верно
x = 1 - является корнем этого уравнения
4) x = 2
(2 + 3)(4 - 2) - 12 = 0
5 * 2 - 12 = 0
10 - 12 ≠ 0
x = 2 - не является корнем этого уравнения
5) x = 3
(3 + 3)(4 - 3) - 12 = 0
6 * 1 - 12 = 0
6 - 12 ≠ 0
x = 3 - не является корнем этого уравнения
ответ : 0 ; 1