Воспользуемся тем, что угловые коэффициенты перпендикулярных прямых k1*k2=-1 5y+x-4=0 y=-1/5*x+4/5 k1=-1/5 k2=-1/(-1/5)=5 - угловой коэффициент касательной(-ых) к графику функции f(x)=x^3+2x+1 в точке(-ах) x0, т.е. f'(x0) находим производную и приравниваем ее к 5, чтобы найти x0. f'(x)=3x^2+2 f'(x0)=3x0^2+2=5 x0^2=1 x01=1 x02=-1 таких касательных, как выходит, будет две найдем f(x01) и f(x02) f(x01)=1^3+2*1+1=4 f(x02)=(-1)^3+2*(-1)+1=-2 уравнение касательной к графику функции f(x) в точке x01 имеет вид y=4+5(x-1) уравнение касательной к графику функции f(x) в точке x02 имеет вид y=-2+5(x-(-1))=-2+5(x+1)
Объяснение:
Для простого решения систем уравнений используют сложения уравнений.
1)
10х+2у=12 (1)
-5х+4у=- 6. (2).
Умножим второе уравнение на два ,получим:
-10х+8у=-12.
Вот теперь удобно сложить эти два уравнения.
10х+2у=12
-10х+8у=- 12.
10у=0.
у=0. ; х=(12-2*0)/10=12/10=1,2. это находим из первого уравнения.
Надеюсь, ты понял(а), как решаются такие системы уравнений методом сложения или вычитания.
Остальное попробуй сама решить. Не получится , напиши.
3х-2у=1
12х+7у=-26.
Умножим (1) на (-4).
-12х+8у=-4
12х+7у=-26.
сложим.
15у=-30.
у=-2.
х={1+2(-2)}/3=(1-4)/3=-1.