* * * * * * * * * * * * * * * * * * * * *
ответ: 4) 15 ; 5) a₁ = -14 , d=3 или a₁ =2, d=3 ; 7) 30 c .
Объяснение:
4) 6x -5= ( (2x+1) +(9x+3) ) /2 ⇔12x -10 =11x + 4 ⇔ 12x -11x= 4+10 ⇒ x=15.
5) { a₄ - a₂ = 6 ; a₂*a₄= 55. ⇔{ (a₁+3d) - (a₁+d)=6 ; (a₁+3d) *(a₁+d)=55⇔
{ 2d=6 ; (a₁+3d) *(a₁+d)=55 ⇔{ d=3 ; (a₁+3*3) *(a₁+3)=55 ⇔
{ d=3 ; (a₁+9) *(a₁+3)=55. ⇔{ d=3 ; a₁² +4a₁ -28= 0⇔{ d=3 ; [a₁=2 a₁² +4a₁ -28= a₁² +4a₁ -28= 0 ⇒ [ a₁ = -14 ; a₁ =2 .
7). a₁=4,9 (м) ; d = 9,8 (м) ; S = 4410 (м)
S =(2a₁+ (n -1)d) *n/2
4410 =(2*4,9 +(n-1)*9,8 ) *n/2⇔ 4410 =4,9*n² ⇔n²=44100/49 = 900 ⇒
n =30 (с) .
24÷4=6 (км/ч) скорость лодки по течению реки.
24÷6=4 (км/ч) скорость лодки против течения реки.
6-4=2 (км/ч) удвоенная скорость течения реки.
2÷2=1 (км/ч) скорость течения реки.
6-1=5 (км/ч) собственная скорость лодки.
ответ: 5 км/ч собственная скорость лодки; 1 км/ч скорость течения реки.
Решение уравнением:
Пусть х (км/ч) скорость течения реки, тогда собственная скорость катера по течению реки будет 24÷4-х=6-х (км/ч), а против течения 24÷6+х=4+х . Т.к. собственная скорость катера неизменна, составим уравнение:
6-х=4+х
2х=2
х=1 (км/ч) скорость течения реки.
6-1=5 (км/ч) собственная скорость катера.
ответ: 5 км/ч собственная скорость лодки; 1 км/ч скорость течения реки.