Если нужно найти периметр прямоугольника, решение будет таково: Известен катет треугольника и то что гипотенуза больше на 3 см другого катета. По теореме Пифагора можем найти и гипотенузу и катет. A^2+B^2=C^2 9^2+X^2= (X+3)^2 - здесь Х это неизвестный катет. 81+Х^2= X^2+6X+9 - Открыли скобки по известной формуле бинома . Переносим нужные члены и получаем: 81-9-6Х=Х^2-X^2=0 72-6x=0 72=6x x=12 Получили что катет равняется 12, а гипотенуза 12+3=15 Ищем периметр прямоугольника: 2(9+12)=18+24=42
Подробнее – на Otvet.Ws – https://otvet.ws/questions/9573791-pozhaluista-srochno-nadooo-odin-iz-katetov-pryamougolnogo.html
Если нужно найти периметр прямоугольника, решение будет таково: Известен катет треугольника и то что гипотенуза больше на 3 см другого катета. По теореме Пифагора можем найти и гипотенузу и катет. A^2+B^2=C^2 9^2+X^2= (X+3)^2 - здесь Х это неизвестный катет. 81+Х^2= X^2+6X+9 - Открыли скобки по известной формуле бинома . Переносим нужные члены и получаем: 81-9-6Х=Х^2-X^2=0 72-6x=0 72=6x x=12 Получили что катет равняется 12, а гипотенуза 12+3=15 Ищем периметр прямоугольника: 2(9+12)=18+24=42
Подробнее – на Otvet.Ws – https://otvet.ws/questions/9573791-pozhaluista-srochno-nadooo-odin-iz-katetov-pryamougolnogo.html
(x+2)^2+x^2=10
2x^2+4x+4-10=0
x^2+2x-3=0
x=-3; x=1
y=-1; y=3
ответ: (-3,-1), (1,3)