Оба графика функций - параболы и у обоих ветви этих парабол направлены вверх, значит, в обоих случаях наименьшее значение функций достигается в вершине параболы. Найдем вершины каждой из них. из формулы ах²+bx+c B(x; y) x(B) = -b / 2a
1) у = х² - 2х + 7 х(В) = 2/2 = 1 у(В) = 1² - 2* 1 + 7 = 1-2+7 = 6 В(1; 6) - вершина => у(1) = 6 - наименьшее значение данной функции у = х² - 2х + 7
2) у = х² - 7 х + 32,5 х(В) = 7/2 = 3,5 у(В) = 3,5² - 7 * 3,5 + 32,5 = 12,25 - 24,5 + 32,5 = 20,25 В(3,5; 20,25) - вершина => у(3,5)=20,25 - наименьшее значение функции у = х² - 7 х + 32,5
Проведем высоту к основанию. Она будет являться и медианой.
По теореме Пифагора высота h равна: h² = 13² -(1/2•24)² = 13² - 12² = 169 - 144 = 25. h = √25 = 5 см.
Площадь треугольника равна S = 1/2ha. В данном случае a - это основание. S = 1/2•5•24 см² = 60 см².
Радиус вписанной окружности в треугольник находится по формуле: r = S/p, где S - площадь треугольника, p - полупериметр.
p = (24 + 13 + 13)/2 = 25 см.
r = 60 см²/25см = 2,4 см.
Радиус описанной около треугольника окружности находится по формуле: R = abc/4S, где a, b и c - стороны треугольника
R = 24•13•13 см/4•60 = 16,9 см
Расстояние d между центрами вписанной окружности и описанной около треугольника находятся по формуле Эйлера: d² = R² - 2Rr d = √R(R - 2r) = √16,9(16,9 - 2•2,4) = √16,9•12,1 = √204,49 = 14,3.
Найдем вершины каждой из них.
из формулы ах²+bx+c
B(x; y)
x(B) = -b / 2a
1) у = х² - 2х + 7
х(В) = 2/2 = 1
у(В) = 1² - 2* 1 + 7 = 1-2+7 = 6
В(1; 6) - вершина
=> у(1) = 6 - наименьшее значение данной функции у = х² - 2х + 7
2) у = х² - 7 х + 32,5
х(В) = 7/2 = 3,5
у(В) = 3,5² - 7 * 3,5 + 32,5 = 12,25 - 24,5 + 32,5 = 20,25
В(3,5; 20,25) - вершина
=> у(3,5)=20,25 - наименьшее значение функции у = х² - 7 х + 32,5