ответ: (5;-2).
Объяснение: Выразим из первого выражения переменную х через у.
х=9+2у
Подставим выражение 9+2у во второе уравнение вместо переменной х.
3(9+2у)+4у=7
27+6у+4у=7
6у+4у=7-27
10у=-20
у=-20:10
у=-2
Подставим значение у в выражение х=9+2у.
х=9+2*(-2)
х=9+(-4)
х=5
Сделаем проверку: 5-2*(-2)=9 3*5+4*(-2)=7
5+4=9 15-8=7
9=9 7=7
ответ:Для того, чтобы найти точки экстремума данной функции нужно найти в каких точках производная равна нулюразделим на 3Значит точки экстремума х=1 и х=-33) Чтобы определить какая из данных точек является точкой максимума, а какая точкой минимума необходимо рассмотреть значение производной на полученных интервалах___+-+ -3 1Если производная на промежутке принимает положительное значение то функция на данном промежутке возрастает, если отрицательное- то функция убываетЗначит на промежутке (-∞;-3) ∪ (1;+∞) функция возрастаетна промежутке (-3;1) убывает4) если до точки х= -3 функция возрастает а после точки -3 убывает, значит при х= -3 точка максимума функции если до точки х=1 функция убывает, а после точки х=1 возрастает то в точка х=1 точка минимуманайдем значение функции в этих точках
ответ:Для того, чтобы найти точки экстремума данной функции нужно найти в каких точках производная равна нулюразделим на 3Значит точки экстремума х=1 и х=-33) Чтобы определить какая из данных точек является точкой максимума, а какая точкой минимума необходимо рассмотреть значение производной на полученных интервалах___+-+ -3 1Если производная на промежутке принимает положительное значение то функция на данном промежутке возрастает, если отрицательное- то функция убываетЗначит на промежутке (-∞;-3) ∪ (1;+∞) функция возрастаетна промежутке (-3;1) убывает4) если до точки х= -3 функция возрастает а после точки -3 убывает, значит при х= -3 точка максимума функции если до точки х=1 функция убывает, а после точки х=1 возрастает то в точка х=1 точка минимуманайдем значение функции в этих точках
x=5 y= -2
Объяснение: