Объяснение:
В основе метода математической индукции (ММИ) лежит принцип математической индукции: утверждение $P(n)$ (где $n$ - натуральное число) справедливо при $\forall n \in N$, если:
Утверждение $P(n)$ справедливо при $n=1$.
Для $\forall k \in N$ из справедливости $P(k)$ следует справедливость $P(k+1)$.
Доказательство с метода математической индукции проводится в два этапа:
База индукции (базис индукции). Проверяется истинность утверждения при $n=1$ (или любом другом подходящем значении $n$)
Индуктивный переход (шаг индукции). Считая, что справедливо утверждение $P(k)$ при $n=k$, проверяется истинность утверждения $P(k+1)$ при $n=k+1$.
Метод математической индукции применяется в разных типах задач:
Доказательство делимости и кратности
Доказательство равенств и тождеств
Задачи с последовательностями
Доказательство неравенств
Нахождение суммы и произведения
ответ: На фото.
Объяснение: Возможны два случая, когда при а * b (в нашем случае а = (х - 3), b = (x + 4) ) может быть < 0: когда в первой системе a < 0, b > 0 и во второй a > 0, b < 0 (это вы можете увидеть на фото прямо под неравенством. Переносим числа, получаем:
1 система {x < 3, x > -4
2 система {x > 3, x < -4
Рисуем ось х возле каждой системы и ставим цифры. Позже начинаем зачеркивать определённые участки. Как это делать?
1 система: х < 3 - кончик знака < указывает налево, значит зачеркиваем всю координату до левого края. x > -4 - знак указывает направо, зачеркиваем всё до правого конца, начиная с -4. Пересечение этих "шриховочек" и будет решением системы. В нашей ситуации это числа от -4 до 3 (но сами эти числа не включаются, ведь x < 3 и x > -4, поэтому мы пишем их в круглые скобки. Если бы был знак больше/меньше и равно, то эти числа мы будет включать, а так же мы их поставим в квадратные скобки).
2 система: тоже самое делаем и для неё. "Штриховочки" не пересекаются, значит у этой системы нет решения (x принадлежит пустому множеству). Значит, решение (x - 3)(x + 4) < 0 даёт нам решение первой системы: (4 ; 3).
Значит ответ b.