2x + 5y = 20
1) Выразим у через х:
5y = - 2х + 20
у = -2/5•х + 4.
2) Найдём несколько решений данного уравнения.
Если х = 5, то у = -2/5•5 + 4 = - 2 + 4 = 2,
(5;2) - первое решение данного уравнения.
Если х = 10, то у = -2/5•10 + 4 = - 4 + 4 = 0,
(10;0) - второе решение данного уравнения.
Если х = - 5, то у = -2/5•(-5) + 4 = 2 + 4 = 6,
(-5;6) - третье решение данного уравнения.
Или так:
1) Выразим х через у:
2x = 20 - 5у
х = 10 - 2,5у.
2) Если у = 2, то х = 10 - 2,5•2 = 5,
(5;2) - первое решение.
Если у = 4, то х = 10 - 2,5•4 = 0,
(0;4) - второе решение.
Если у = 0, то х = 10 - 2,5•0 = 10,
(10;0) - третье решение.
27^x - 9^(x+1) - (9^(x+1) + 486)/(3^x - 6) <= 81
27^x - 9*9^x - (9*9^x + 486)/(3^x - 6) <= 81
Замена 3^x = y > 0 при любом х
((y^3 - 9y^2 - 81)(y - 6) - (9y^2 + 486))/(y - 6) <= 0
(y^4 - 9y^3 - 81y - 6y^3 + 54y^2 + 486 - 9y^2 - 486)/(y - 6) <= 0
(y^4 - 15y^3 + 45y^2 - 81y)/(y - 6) <= 0
y(y^3 - 15y^2 + 45y - 81)/(y - 6) <= 0
y > 0 при любом х, на него можно разделить
(y^3 - 15y^2 + 45y - 81)/(y - 6) <= 0
Уравнение в числителе имеет один иррациональный корень
Но школьник такой корень найти не может.
Отсюда вывод - в исходном уравнении еще есть опечатки, которые сразу не видны.