Объяснение:
1) f(x)=2e^x+3x² f'(x)=2e^x+6x
2) f(x)= x sinx. f'(x)= sinx+xcosx
3) у = (3х – 1)(2 – х) y'=3(2 – х)+(3х – 1)×(-1)=6-3x-3x+1=-6x+7
4) y=9x²-cosx y'= 18x+sinx
5) y=e^x-x^7 y'= e^x-7x^6
7) f '(1), f(x)=3x2-2x+1. f'(x)=6x-2; f'(1)=6-2=4
8) у = х²(3х^5 – 2) ; х0 = – 1. у' =(3x^7-2x²)'=21x^6-4x
y'(-1)=21+4=25
9) f '( ), f(x)=(2x-1)cosx=2cosx-(2x-1)sinx
10) f '(1), f(x)=(3-x²)(x²+6)= -2x(x²+6)+2x(3-x²) = -4x³ -6x
11) f '(1), f(x)=(x^4-3)(x²+2), f'(x)=3x³ (x²+2)+2x(x^4-3)=5x^5+6x³-6x
1)х∈ (-∞, -5)∪(3, +∞).
2)Решение системы уравнений (4; 3); (3; 4).
3)Согласно графика, координаты точек пересечения (-1;2); (1; 2).
Объяснение:
1)Найти область определения:
а)по ОДЗ х≠5;
б)подкоренное выражение должно быть всегда больше либо =нулю:
х²+2х-15>=0
Приравнять к нулю и решить как квадратное уравнение:
х²+2х-15=0
D=b²-4ac = 4+60=64 √D= 8
х₁=(-b-√D)/2a
х₁=(-2-8)/2
х₁= -10/2
х₁= -5;
х₂=(-b+√D)/2a
х₂=(-2+8)/2
х₂=6/2
х₂=3.
Теперь начертим СХЕМУ параболы (ничего вычислять не нужно), которую выражает данное уравнение, ветви направлены вверх, парабола пересекает ось Ох при х= -5 и х=3, отмечаем эти точки схематично, смотрим на график.
По графику ясно видно, что у>=0 (как в неравенстве), слева и справа от значений х, то есть, область определения функции в интервале
х∈ (-∞, -5)∪(3, +∞).
2)Решить систему уравнений:
ху=12
2х+2у-ху=2
Выразим х через у в первом уравнении, подставим выражение во второе уравнение и вычислим у:
х=12/у
2(12/у)+2у-12-2=0
24/у+2у-14=0
Умножить уравнение на у, чтобы избавиться от дроби:
24+2у²-14у=0
Разделить уравнение на 2 для упрощения:
у²-7у+12=0, квадратное уравнение, ищем корни:
D=b²-4ac = 49-48=1 √D= 1
у₁=(-b-√D)/2a
у₁=(7-1)/2
у₁=6/2
у₁=3
у₂=(-b+√D)/2a
у₂=(7+1)/2
у₂=8/2
у₂=4
х₁=12/у₁
х₁=4
х₂=12/у₂
х₂=3
Решение системы уравнений (4; 3); (3; 4).
3)Построить график функции у=4х⁻² -2.
а)у=4х⁻² -2= 4/х²-2
Придаём значения х, подставляем в уравнение, вычисляем у, записываем в таблицу.
Таблица:
х -8 -6 -4 -2 -1 0 1 2 4 6 8
у -1,9 -1,9 -1,7 -1 2 - 2 -1 -1,7 -1,9 -1,9
б)Построить график функции 3х² -1 (парабола):
Придаём значения х, подставляем в уравнение, вычисляем у, записываем в таблицу.
Таблица:
х -2 -1 0 1 2
у 11 2 -1 2 11
Согласно графика, координаты точек пересечения (-1;2); (1; 2).
(5х-2)(-х+3)=0
Произведение равно нулю, когда один из множителей равен нулю.
Допустим, что:
5х-2=0 или -х+3=0
5х=2 -х=-3
х=0.4 х=3
ответ: 0.4, 3.