М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Mamulia1221
Mamulia1221
01.01.2023 13:14 •  Алгебра

Функция задана формулой у=1/2х+ 3 определить а) значение функций,если значение аргумента ровно -4. Б) значение аргумента при котором значения функций ровно 5
ЭТО ОТВЕТТЕ КАК МОЖНО БЫСТРЕЕ

👇
Открыть все ответы
Ответ:
NikolayMakaren
NikolayMakaren
01.01.2023
1) Ключевое слово - 7 одинаковых прямоугольников!
Пусть одна сторона этих прямоугольников x, а другая y.
У одного прямоугольника периметр P = 2(x + y) = 20
x + y = 10; x = 10 - y.
Приставим прямоугольники друг к другу в цепочку сторонами x.
Получим длинный прямоугольник с сторонами x и 7y
P = 2(x + 7y) = 2(10 - y + 7y) = 2(10 + 6y) = 100
10 + 6y = 50
6y = 40; y = 40/6 = 20/3 = 6 2/3; x = 10 - y = 3 1/3 = 10/3
Прямоугольник со сторонами 10/3 и 20/3 имеет периметр 20,
а 7 таких прямоугольников, выстроенных в цепочку, дают прямоугольник с периметром 100.

2) Сумма 100 = 3*33 + 1 содержит 34 хороших слагаемых.
Это и есть максимум.

3) Бред - треугольник не может быть ромбом.
4,4(75 оценок)
Ответ:
katya1172
katya1172
01.01.2023
Знаменатель положителен, поэтому его можно отбросить. Влияет на ответ он только по причине того, что тангенс не всюду определен. Итак, из-за знаменателя x\not= \frac{\pi}{2}+\pi n

Отбрасывая знаменатель получаем неравенство \sin x\ \textless \ \cos x.

Чтобы решить это неравенство, решим сначала уравнение \sin x=\cos x. Решать его можно, деля на косинус и получая при этом уравнение относительно тангенса. Но проще вспомнить, что косинус и синус - это абсцисса и ордината точки на единичной окружности. Они равны на биссектрисе 1-го и 3-го координатных углов. Меньше же ордината будет ниже этой прямой,чему соответствуют промежутки от -3\pi/4+2\pi k до \pi/4+2\pi k.

Выбрасывая x, не попавшие в ОДЗ, получаем объединение интервалов

\bigcup\limits_{k\in Z}\left((-\frac{3\pi}{4}+2\pi k;-\frac{\pi}{2}+2\pi k)\cup(-\frac{\pi}{2}+2\pi k;\frac{\pi}{4}+2\pi k)\right)
4,8(60 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ