(1/5)^(х² +2х) > (1/25)^(16-х)
приведём павую часть неравенства к основанию 1/5
(1/5)^(х² +2х) > (1/5)^2(16-х)
Основание степени 1/5<1, а мы знаем, что показательная ф-ция с основанием меньше 1 - убывающая = > значит ф-ция f(x) = 1/5^x убывающая = >
большему значению ф-ции соответствует меньшее значение аргумента, т.е.
х² +2х < 2(16-х)
х² +2х - 32 + 2х < 0
х² + 4х - 32 < 0
Исследуем ф-цию f(x) = х² + 4х - 32. Найдем нули:
х² + 4х - 32 = 0
D = 16 + 4*32 = 16 + 128 = 144
х₁ = (-4 + 12)/2 = 4
х₂ = (- 4 - 12)/2 = -8
+ - 8 4 +
оо
_
f(x) принимает отрицательные значения на промежутке (4 ; -8)
ответ: (4 ; -8).
Если так не видишь,что эти уравнения похожи на обычные квадратные, то сделай замену х^2=t
а) х^4-3х^2+2=0 сделаем замену и получим:
t^2-3t+2=0, дальше по теореме Виетта ищем корни, которые видны сразу:
t=2
t=1 , дальше возвращаемся к изначальным переменным:
х^2=2
х^2=1, отсюда:
х=корень из 2
х=минус корень из 2
х=1
х=-1
Я думаю ты поняла и поэтому я опустила моменты с заменами. Если непонятно спрашивай
б)х^4-10х^2+9=0
х^2=9
х^2=1
ответ:х=3
х=-3
х=1
х=-1
в)х^4-5х^2+4=0
х^2=4
х^2=1
ответ:х=2
х=-2
х=-1
х=1
г)х^4-26х^2+25=0
х^2=25
х^2=1
ответ:х=5
х=-5
х=1
х=-1
д)х^4-20х^2+64=0
х^2=16
х^2=4
ОТвет:х=4
х=-4
х=2
х=-2